• 中文核心期刊
  • 中国科技核心期刊
  • ISSN 1007-6336
  • CN 21-1168/X
ZHENG Zong-sheng, HAO Jian-bo, HUANG Dong-mei, ZOU Guo-liang. Nearshore wave grade video monitoring based on deep learning[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2017, 36(6): 934-940. DOI: 10.13634/j.cnki.mes20170622
Citation: ZHENG Zong-sheng, HAO Jian-bo, HUANG Dong-mei, ZOU Guo-liang. Nearshore wave grade video monitoring based on deep learning[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2017, 36(6): 934-940. DOI: 10.13634/j.cnki.mes20170622

Nearshore wave grade video monitoring based on deep learning

More Information
  • Received Date: October 11, 2016
  • Revised Date: November 17, 2016
  • Deep learning is an important research field of machine learning. As an effective tool for Big Data processing and analysis, it has been paid more attention. Based on multi-source long time sequence nearshore wave video data labeled by wave synchronous measure in situ, the ocean-specific wave grade deep learning model architecture (Wave-CNNs) was proposed. We constructed the wave train and test datasets which were suitable for deep learning in marine environment. The video monitoring images were preprocessed by using the data augmentation technology to improve the generalization ability of model. According to the correlation of video, error function was introduced to optimize model sensitivity. Finally, the proposed improved deep learning model was applied to 3000-sample wave image training set, and the results were verified by 300-sample wave image test set. The results showed that Wave-CNNs achieved 66.6% recognition accuracy, which was superior to traditional Bayes and SVM methods.

  • [1]
    周庆伟, 张松, 武贺, 等.海洋波浪观测技术综述[J].海洋测绘, 2016, 36(2):39-44. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hych201602010&dbname=CJFD&dbcode=CJFQ
    [2]
    楚晓亮, 徐铭, 王峰, 等.利用X波段雷达提取海浪信息的分析[J].中国海洋大学学报, 2011, 41(5):110-113. doi: 10.3969/j.issn.1672-5174.2011.05.017
    [3]
    王伟, 张斌, 马跃华, 等.基于MIMO雷达的海面场景成像模拟及海浪信息反演方法[J].中国科学:信息科学, 2016, 46(6):763-776. http://info.scichina.com:8084/sciF/CN/abstract/abstract519227.shtml
    [4]
    BENETAZZO A.Measurements of short water waves using stereo matched image sequences[J].Coastal Engineering, 2006, 53(12):1013-1032. doi: 10.1016/j.coastaleng.2006.06.012
    [5]
    BENETAZZO A, FEDELE F, GALLEGO G, et al.Offshore stereo measurements of gravity waves[J].Coastal Engineering, 2012, 64:127-138. doi: 10.1016/j.coastaleng.2012.01.007
    [6]
    LECUN Y, BENGIO Y, HINTON G.Deep learning[J].Nature, 2015, 521(7553):436-444. doi: 10.1038/nature14539
    [7]
    付伟, 王金桥, 滕可振.基于深度学习的监控视频目标检索[J].无线电工程, 2015, 45(12):16-20. doi: 10.3969/j.issn.1003-3106.2015.12.05
    [8]
    CHARIKARM S.Similarity estimation techniques from rounding algorithms[C]//Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing.New York:ACM, 2002:380-388.
    [9]
    WEISS Y, TORRALBA A, FERGUS R.Spectral hashing[C]//Advances in Neural Information Processing Systems 21:Proceedings of the 22nd Annual Conference on Neural Information Processing Systems.Vancouver, British Columbia, Canada:NIPS, 2008:1753-1760.
    [10]
    邬美银, 陈黎.基于深度学习的监控视频树叶遮挡检测[J].武汉科技大学学报, 2016, 39(1):69-74. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yekj201601013&dbname=CJFD&dbcode=CJFQ
    [11]
    文孟飞, 胡超, 刘伟荣.一种基于深度学习的异构多模态目标识别方法[J].中南大学学报:自然科学版, 2016, 47(5):1580-1587. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zngd201605018&dbname=CJFD&dbcode=CJFQ
    [12]
    DONG Y, LIU Y N, LIAN S G.Automatic age estimation based on deep learning algorithm[J].Neurocomputing, 2016, 187:4-10. doi: 10.1016/j.neucom.2015.09.115
    [13]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25:Proceedings of the 26th Annual Conference on Neural Information Processing Systems.Lake Tahoe, Nevada, USA:NIPS, 2012:2012.
    [14]
    赵鹏, 王斐, 刘慧婷, 等.基于深度学习的手绘草图识别[J].四川大学学报:工程科学版, 2016, 48(3):94-99. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sclh201603012&dbname=CJFD&dbcode=CJFQ
    [15]
    齐占辉, 党超群, 孙东波, 等. 基于GNSS卫星信号的风暴潮海浪协同测量技术在海岸带开发管理中的应用研究[C]//"一带一路"战略与海洋科技创新——中国海洋学会2015年学术论文集. 北京: 中国海洋学会, 2015.
    [16]
    赵领娣, 董淑静, 边春鹏.基于联立方程模型的风暴潮灾害自然等级预报研究[J].海洋环境科学, 2013, 32(1):23-27. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hyhj201301006&dbname=CJFD&dbcode=CJFQ
    [17]
    PHILLIPS P J, MOON H, RAUSS P, et al.The FERET evaluation methodology for face-recognition algorithms[C]//Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Juan:IEEE, 1997:137-143.
    [18]
    LECUN Y, BOSER B, DENKER J S, et al.Backpropagation applied to handwritten zip code recognition[J].Neural Computation, 2008, 1(4):541-551. http://ieeexplore.ieee.org/document/6795724
    [19]
    MONTAVONG, ORR G, MVLLER K R.Neural networks:tricks of the trade[M].Berlin Heidelberg:Springer, 2012:103-105.
    [20]
    Bouvrie J.Notes on convolutional neural networks[R].Massachusetts:Center for Biological and Computational Learning, 2006:38-44.
    [21]
    SZEGEDY C, LIU W, JIA Y Q, et al.Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston, MA:IEEE, 2015:1-9.
    [22]
    RUSSAKOVSKY O, DENG J, SU H, et al.ImageNet Large Scale Visual Recognition Challenge[J].International Journal of Computer Vision, 2015, 115(3):211-252. doi: 10.1007/s11263-015-0816-y
    [23]
    MOBAHI H, COLLOBERT R, WESTON J.Deep learning from temporal coherence in video[C]//Proceedings of the 26th Annual International Conference on Machine Learning.New York:ACM, 2009:737-744.
    [24]
    丁世飞, 齐丙娟, 谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报, 2011, 40(1):2-10. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dkdx201101003&dbname=CJFD&dbcode=CJFQ
    [25]
    CHANG C C, LIN C J.LIBSVM:a library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):No.27. https://www.mendeley.com/research-papers/library-support-vector-machines-1/
    [26]
    高媛媛, 刘强国.基于LIBSVM的葡萄酒品质评判模型[J].四川理工学院学报:自然科学版, 2010, 23(5):530-532. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=scqx201005011&dbname=CJFD&dbcode=CJFQ
    [27]
    朱军, 胡文波.贝叶斯机器学习前沿进展综述[J].计算机研究与发展, 2015, 52(1):16-26. doi: 10.7544/issn1000-1239.2015.20140107
    [28]
    卢惠林.基于加权Bayes分类器的流数据在线分类算法研究[J].计算机科学, 2014, 41(5):227-229, 234. doi: 10.11896/j.issn.1002-137X.2014.05.047
    [29]
    ZEILER M D, FERGUS R.Visualizing and understanding convolutional networks[M]//FLEET D, PAJDLA T, SCHIELE B, et al.Computer Vision-ECCV 2014:Lecture Notes in Computer Science.Switzerland:Springer, 2014, 8689:818-833.
    [30]
    DENG L, YU D.Deep Learning:Methods and Applications[J].Foundations & Trends ® in Signal Processing, 2013, 7(3):197-387. http://ci.nii.ac.jp/ncid/BB17921459
  • Related Articles

    [1]CHEN Yiming, SUN Deyong, WANG Shengqiang, HE Miao, CHEN Ying, ZHANG Hailong, ZHANG Yue. Spatiotemporal variations of nutrients in Jiangsu coastal waters based on GOCI observations[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(5): 766-775. DOI: 10.12111/j.mes.2023-x-0328
    [2]WANG Lina, QI Zhiyuan, ZHANG Hongchun, DONG Changming. Prediction of significant wave height based on CNN-STLSTM-CNN model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(3): 417-429. DOI: 10.12111/j.mes.2023-x-0127
    [3]DU Jiahao, NIE Jie, YE Min, SONG Derui, GAO Zhen, WEI Zhiqiang. A deep neural networks prediction model for sea surface temperature based on global cross-scale spatial-temporal attention[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(6): 944-954. DOI: 10.12111/j.mes.2023-x-0048
    [4]ZHANG Xue-wei, HAN Zhen. Prediction and analysis of Argo temperature data by ConvGRU model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(4): 628-635. DOI: 10.12111/j.mes.20210054
    [5]ZHOU Na, LIU Qiang. Prediction of typhoon disaster losses in Guangdong province based on fuzzy neural networks[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(3): 461-466. DOI: 10.12111/j.mes.2021-0047
    [6]LIU Hong-yan, LI Kai-qiang, KANG Bo-lun, QIN Hai-hua. Fe(Ⅲ) reduction and hydrogen production by Fe (Ⅲ)-reducing bacterium Enterococcus sp. ZQ21[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(3): 379-383. DOI: 10.12111/j.mes.20200119
    [7]CHEN Chen, MA Yi, HU Ya-bin, ZHANG Jing-yu. A Convolution neural network model with adaptive learning rate and its application-a case study of remote sensing classification of coastal wetland[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2019, 38(4): 621-627. DOI: 10.12111/j.mes20190421
    [8]SUN Jia-wen, HUANG Jie, YU Yong-hai, YIN Jing, WANG Hao-ran. Exploration and application of the static equilibrium headland-bay plane curve shape rules based on BP neural network[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2018, 37(1): 143-150. DOI: 10.13634/j.cnki.mes20180122
    [9]DONG Yu-jia, MENG Xiang-feng. Review of the research on the classification of two types of ENSO events[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(3): 473-480. DOI: 10.13634/j.cnki.mes.2015.03.026
    [10]GOU Lu-feng, GAO Qiang, GAO Le-hua. Evaluation on marine ecological security in Shandong Province based on BP neural network[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(3): 427-432. DOI: 10.13634/j.cnki.mes.2015.03.018
  • Cited by

    Periodical cited type(7)

    1. 王野,司璐璐,陈慧岩,席军强,于会龙. 水陆无人两栖车环境感知技术综述. 车辆与动力技术. 2024(02): 47-56 .
    2. 何盛琪,李其超,宋巍,王文娟,高松,毕凡. 基于近岸海面视频的浪高实时检测预测系统. 计算机技术与发展. 2022(07): 138-143 .
    3. 肖友定. 基于深度学习的体育视频分类方法. 电子设计工程. 2021(03): 162-166+170 .
    4. 宋巍,陈媛媛,贺琪,杜艳玲. 基于视频时空特征学习的近岸海浪周期检测. 激光与光电子学进展. 2021(24): 114-124 .
    5. 宋巍,周旭,毕凡,郭东琳,高松,贺琪,白志鹏. 近岸海浪视频浪高自动检测. 中国图象图形学报. 2020(03): 507-519 .
    6. 贺园园,胡小敏,梁腾飞. 基于深度机器学习的霾污染监测技术. 计算机测量与控制. 2020(08): 18-22 .
    7. 陈建国,康海静,兰英. 基于CPLD芯片的视频图像码率控制方法研究. 计算机测量与控制. 2020(06): 86-89+94 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (3359) PDF downloads (58) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return