• 中文核心期刊
  • 中国科技核心期刊
  • ISSN 1007-6336
  • CN 21-1168/X
LI Dong-xue, GAO Zhi-qiang, SHANG Wei-tao, JIANG Xiao-peng, SONG De-bin, ZHANG Yuan-yuan. Information extraction of Ulva Prolifera from coastal landscape using UAV m ultispectral remote sensing images[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2020, 39(3): 438-446. DOI: 10.12111/j.mes20200318
Citation: LI Dong-xue, GAO Zhi-qiang, SHANG Wei-tao, JIANG Xiao-peng, SONG De-bin, ZHANG Yuan-yuan. Information extraction of Ulva Prolifera from coastal landscape using UAV m ultispectral remote sensing images[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2020, 39(3): 438-446. DOI: 10.12111/j.mes20200318

Information extraction of Ulva Prolifera from coastal landscape using UAV m ultispectral remote sensing images

More Information
  • Received Date: November 25, 2018
  • Revised Date: February 13, 2019
  • Since 2007, green tides (also called Ulva prolifera) occurred every summer in the Yellow Sea, causing ecological problems in the coastal environment of Shandong Peninsula.A large number of Ulva prolifera on shore will rot and stink if not handled in time, which seriously affects the tourism and the health of residents in coastal landscape.In order to improve the accuracy of monitoring green tide disasters, and to improve the efficiency of the cleaning up and disposal of Ulva prolifera at key prevention and control area, In this study, the high-precision image of UAV is used to monitor the green tide disaster in Yintan landscape of Rushan City.With the spectral characteristics of Ulva prolifera and coastal vegetation measured by spectroradiometer, four vegetation indices were used to analyze and identify the Ulva prolifera and coastal vegetation, and to verify the extraction of Ulva prolifera and coastal vegetation under different vegetation indices, and based on this extraction method, the biomass of coastal green tide algae was estimated.The results show that in the red-edge band, Ulva prolifera and coastal vegetation can be distinguished. MTCI(MERIS terrestrial chlorophyll index) is more suitale, with the accuracy of 91.3%, followed by SRredge, NDVIredge and MSRredge, with the accuracy of 85.3%, 83.8% and 81.2%, respectively; Estimation model of biomass based on MTCI index showed that about 600 tons of Ulva prolifera were estimated in 300 m study area.An effective method for dynamic monitoring and cleaning up of green tide disaster is provided.

  • [1]
    ZHOU M J, LIU D Y, ANDERSON D M, et al.Introduction to the special issue on green tides in the Yellow Sea[J].Estuarine, Coastal and Shelf Science, 2015, 163:3-8. doi: 10.1016/j.ecss.2015.06.023
    [2]
    颜天, 于仁成, 周名江, 等.黄海海域大规模绿潮成因与应对策略——"鳌山计划"研究进展[J].海洋与湖沼, 2018, 49(5):950-958. http://www.cnki.com.cn/Article/CJFDTotal-HYFZ201805003.htm
    [3]
    于仁成, 孙松, 颜天, 等.黄海绿潮研究:回顾与展望[J].海洋与湖沼, 2018, 49(5):942-949. http://d.old.wanfangdata.com.cn/Periodical/zgsckx200805015
    [4]
    顾行发, 陈兴峰, 尹球, 等.黄海浒苔灾害遥感立体监测[J].光谱学与光谱分析, 2011, 31(6):1627-1632. doi: 10.3964/j.issn.1000-0593(2011)06-1627-06
    [5]
    HU L B, HU C M, HE M X.Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea[J].Remote Sensing of Environment, 2017, 192:217-227. doi: 10.1016/j.rse.2017.01.037
    [6]
    QI L, HU C M, XING Q G, et al.Long-term trend of Ulva prolifera blooms in the western Yellow Sea[J].Harmful Algae, 2016, 58:35-44. doi: 10.1016/j.hal.2016.07.004
    [7]
    ZHENG X Y, GAO Z Q, NING J C, et al.Remote sensing monitoring of green tide in the Yellow Sea in 2015 Based on GF-1 WFV Data[C]//Proceedings of SPIE 9975, Remote Sensing and Modeling of Ecosystems for Sustainability XIII.San Diego, California, United States: SPIE, 2016: 99750L.
    [8]
    曾韬, 刘建强."北京一号"小卫星在青岛近海浒苔灾害监测中的应用[J].遥感信息, 2009(3):34-37. doi: 10.3969/j.issn.1000-3177.2009.03.008
    [9]
    邢前国, 郑向阳, 施平, 等.基于多源、多时相遥感影像的黄、东海绿潮影响区检测[J].光谱学与光谱分析, 2011, 31(6):1644-1647. doi: 10.3964/j.issn.1000-0593(2011)06-1644-04
    [10]
    汪沛, 罗锡文, 周志艳, 等.基于微小型无人机的遥感信息获取关键技术综述[J].农业工程学报, 2014, 30(18):1-12. doi: 10.3969/j.issn.1002-6819.2014.18.001
    [11]
    毛智慧, 邓磊, 孙杰, 等.无人机多光谱遥感在玉米冠层叶绿素预测中的应用研究[J].光谱学与光谱分析, 2018, 38(9):2931-29223. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201809043
    [12]
    BARRERO O, PERDOMO S A.RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields[J].Precision Agriculture, 2018, 19(5):809-822. doi: 10.1007/s11119-017-9558-x
    [13]
    GAO Z Q, XU F X, SONG D B, et al.Multi-resource data-based research on remote sensing monitoring over the green tide in the Yellow Sea[C]//Proceedings of SPIE 10405, Remote Sensing and Modeling of Ecosystems for Sustainability XIV.San Diego, California, United States: SPIE, 2017: 104050N.
    [14]
    XU F X, GAO Z Q, JIANG X P, et al.A UAV and S2A data-based estimation of the initial biomass of green algae in the South Yellow Sea[J].Marine Pollution Bulletin, 2018, 128:408-414. doi: 10.1016/j.marpolbul.2018.01.061
    [15]
    XU F X, GAO Z Q, SHANG W T, et al.Validation of MODIS-based monitoring for a green tide in the Yellow Sea with the aid of unmanned aerial vehicle[J].Journal of Applied Remote Sensing, 2017, 11(1):012007. doi: 10.1117/1.JRS.11.012007
    [16]
    LIU X Q, LI Y, WANG Z L, et al.Cruise observation of Ulva prolifera bloom in the southern Yellow Sea, China[J].Estuarine, Coastal and Shelf Science, 2014, 163:17-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8aca3a4adef498a464ea4c7c7577823c
    [17]
    吴孟泉, 郭浩, 张安定, 等.2008年-2012年山东半岛海域浒苔时空分布特征研[J].光谱学与光谱分析, 2014, 34(5):1312-1318. doi: 10.3964/j.issn.1000-0593(2014)05-1312-07
    [18]
    LIU X Q, WANG Z L, ZHANG X L.A review of the green tides in the Yellow Sea, China[J].Marine Environmental Research, 2016, 119:189-196. doi: 10.1016/j.marenvres.2016.06.004
    [19]
    KANKE Y, TUBAÑA B, DALEN M, et al.Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields[J].Precision Agriculture, 2016, 17(5):507-530. doi: 10.1007/s11119-016-9433-1
    [20]
    李苑溪, 陈锡云, 罗达, 等.铜胁迫下玉米叶片反射光谱的红边位置变化及其与叶绿素的关系[J].光谱学与光谱分析, 2018, 38(2):546-551. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201802035
    [21]
    DASH J, CURRAN P J.The MERIS terrestrial chlorophyll index[J].International Journal of Remote Sensing, 2004, 25(23):5403-5413. doi: 10.1080/0143116042000274015
    [22]
    DASH J, CURRAN P J, TALLIS M J, et al.Validating the MERIS terrestrial chlorophyll Index (MTCI) with ground chlorophyll content data at MERIS spatial resolution[J].International Journal of Remote Sensing, 2010, 31(20):5513-5532. doi: 10.1080/01431160903376340
  • Related Articles

    [1]ZHANG Wenbo, HUANG Honghui, GONG Xiuyu, LIU Huaxue. Study on carbon and nitrogen stable isotopes of size fractionated zooplankton in western South China Sea[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2025, 44(1): 89-96. DOI: 10.12111/j.mes.2023-x-0320
    [2]LI Min, CHEN Li, LI Jingtai, YAN Dandan, LIU Yao, WU Cuiling, LUAN Zhaoqing. Inversion of aboveground biomass on Spartina alterniflora based on Sentinel-2 data[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(3): 386-397. DOI: 10.12111/j.mes.2023-x-0244
    [3]WANG Yu, TAN Junzhong, ZHANG Mei, ZHU Zhenyu. Extraction and correlation analysis of growth parameters of Spartina alterniflora based on UAV remote sensing[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(1): 100-108, 118. DOI: 10.12111/j.mes.2023-x-0070
    [4]SU Xiu, LI Yue-ming, JING Xin-di, SONG De-rui, LIU Gui-ze, XU Jing-ping, WANG Xiang. Quantitative remote sensing inversion of Suaeda salsa growth density based on GF-6[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(1): 151-159. DOI: 10.12111/j.mes.2021-x-0130
    [5]ZHANG Xin-quan, WU Xiao-ya, ZHEN Yu, CHEN Yang-yang. Distribution characteristics of nitrifiers and denitrifiers in sediments from Changjiang Estuary and adjacent sea area[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2020, 39(5): 746-752. DOI: 10.12111/j.mes.20190099
    [6]YANG Guo-qiang, MA Yi, WANG Jian-bu, Bao Yu-hai, XIE Lin-ping, WANG Min. AGB of Tamarix remote sensing estimation research based on GF-1 image -take Changyi Tamarix national special marine reserves as an example[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2018, 37(1): 78-85, 94. DOI: 10.13634/j.cnki.mes20180113
    [7]SU Xiu, GENG Jie, MA Xiao-rui, WANG Hong-yu, WANG Xiang. Mangrove species classification based on multiple vegetation index extraction and joint sparse representation[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2017, 36(1): 114-120. DOI: 10.13634/j.cnki.mes20170119
    [8]CHEN Peng-fei, LIU Chang-an, ZHANG Yue, ZHANG Yan-hua, LU Wei-zhi, ZHOU Sheng-ling, HAN Ming-fu, YU Cai-fen. Biomass estimating medels established for coastal Tamarix chinensis[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(4): 551-556. DOI: 10.13634/j.cnki.mes20160412
    [9]ZHANG Dong-dong, LIU Xiao-xu, GUAN Chun-jiang, YUAN Xiu-tang. Survey and study of phytoplankton ecology in aquaculture ponds and near-shore areas of Qingduizi Bay in four seasons[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(2): 209-213. DOI: 10.13634/j.cnki.mes.2016.02.009
    [10]DING Lei, MA Yi. Research on biomass estimation model of reed in Yellow River Estuary wetland based on the in situ spectral data[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(5): 718-722,728. DOI: 10.13634/j.cnki.mes.2015.05.013
  • Cited by

    Periodical cited type(5)

    1. 麻德明,张秀林,田梓文,王佳新. 无人机遥感影像浒苔信息提取方法. 测绘通报. 2023(08): 24-28 .
    2. 孙琳,毕卫红,刘桐,武家晴,张保军,付广伟,金娃,王兵,付兴虎. 应用机载高光谱与机器学习法的绿藻识别算法研究. 光谱学与光谱分析. 2023(11): 3637-3643 .
    3. 赵松,侯毅凯,张安兵,王贺封,马杰. 基于无人机多光谱影像的滏阳河水质遥感反演. 测绘与空间地理信息. 2022(03): 81-85 .
    4. 张涛,刘瑞,葛亮,高国庆,许志勇. 基于RTK技术的无人机应用于铁塔三维建模中的精度分析. 中国管理信息化. 2021(04): 89-91 .
    5. 尚伟涛,高志强,姜晓鹏,田信鹏,郭少方. 基于无人机遥感的黄海绿潮搁浅生物量估算. 海洋科学. 2021(10): 11-19 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (3132) PDF downloads (59) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return