• 中文核心期刊
  • 中国科技核心期刊
  • CSCD
  • ISSN 1007-6336
  • CN 21-1168/X
SUN Xue-shi, HU Zhi-zhou, LIU Ming, PANG Yue, FAN De-jiang. Distributions and influence factors of Eh and pH in the East China Sea in autumn[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2019, 38(2): 211-220. DOI: 10.12111/j.mes20190208
Citation: SUN Xue-shi, HU Zhi-zhou, LIU Ming, PANG Yue, FAN De-jiang. Distributions and influence factors of Eh and pH in the East China Sea in autumn[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2019, 38(2): 211-220. DOI: 10.12111/j.mes20190208

Distributions and influence factors of Eh and pH in the East China Sea in autumn

More Information
  • Received Date: October 14, 2017
  • Revised Date: December 13, 2017
  • On the basis of in-situ measured data of Eh and pH from water body which has collected from 38 stations (a total of 114 samples) in the East China Sea during autumn season in 2016.With the combination simultaneous observations of environment hydrology, spatial distributions and influential factors of Eh and pH were discussed.The results illustrated that the values of Eh varies from 337.2 mV to 588.3 mV having average value 526.57 mV which is characterized by discontinuities.There is south and north "dual-core" structure in space having higher values of Eh in the inner shelf and lower in the estuary.The range of pH value is from 7.80 to 8.24 having an average value 8.04.While the values of pH in coastal areas and surface layers are higher than as compared to outer shelf and bottom layers, respectively.Comparison of two methods are involved to measured Eh with Pt electrode and calculated Eh from the Nernst equation, we can infer that high Eh in disequilibrium state is mainly controlled by the concentrations of O2(aq)/H2O couple and the contribution of organic mineralization and reduction of Fe(Ⅲ) relatively increased due to obvious stratification.Additionally, significant negative and positive correlations emerged between pH and temperature, and salinity, revealing that physical processes are also important factors for the oxidation-reduction reactions.Strong positive correlation between pH, temperature and salinity has been found which is indicating that the variation of pH in near-shore areas are affected by the input, diffusion and mixing of Yangtze Diluted Water.Restricted by turbidity, chlorophyll and Eh, the production of phytoplankton is only responsible for the variation of pH in surface water.On the basis of linear regression model established by pH-T and -S, the effects of temperature and salinity have been removed and the low values of pH performed in bottom water off the estuary may probably due to the stratification structure and the local decomposition of organic matter.

  • [1]
    FAN D J, NEUSER R D, SUN X G, et al.Authigenic iron oxide formation in the estuarine mixing zone of the Yangtze River[J].Geo-Marine Letters, 2008, 28(1):7-14. doi: 10.1007/s00367-007-0084-0
    [2]
    孙学诗, 范德江, 刘鹏飞, 等.春季长江口及邻近海域水体Eh和pH的分布[J].海洋科学进展, 2017, 35(1):96-106. doi: 10.3969/j.issn.1671-6647.2017.01.010
    [3]
    王为民, 刘光兴, 陈洪举, 等.短期海洋酸化对黄海近岸浮游植物群落结构的影响[J].海洋环境科学, 2016, 35(3):392-397. doi: 10.13634/j.cnki.mes20160311
    [4]
    宋金明.中国近海沉积物-海水界面化学[M].北京:海洋出版社, 1997:40-45.
    [5]
    MEYER D, PRIEN R D, DELLWIG O, et al.Electrode measurements of the oxidation reduction potential in the Gotland Deep using a moored profiling instrumentation[J].Estuarine, Coastal and Shelf Science, 2014, 141:26-36. doi: 10.1016/j.ecss.2014.02.001
    [6]
    SHIROKOVA V L, ENRIGHT A M L, KENNEDY C B, et al.Thermal intensification of Microbial Fe(Ⅱ)/Fe(Ⅲ) redox cycling in a pristine shallow sand aquifer on the Canadian Shield[J].Water Research, 2016, 106:604-612. doi: 10.1016/j.watres.2016.10.050
    [7]
    暨卫东.中国近海海洋——海洋化学[M].北京:海洋出版社, 2016:7-374.
    [8]
    范德江, 陈彬, 王亮, 等.长江口外悬浮颗粒物中自生纤铁矿和胶黄铁矿[J].地球科学——中国地质大学学报, 2014, 39(10):1364-1370. http://d.old.wanfangdata.com.cn/Periodical/dqkx201410008
    [9]
    吴伊婧, 范代读, 印萍, 等.近岸底层水体低氧沉积记录研究进展[J].地球科学进展, 2016, 31(6):567-580. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201606003
    [10]
    KUMAR A R, RIYAZUDDIN P.Seasonal variation of redox species and redox potentials in shallow groundwater:a comparison of measured and calculated redox potentials[J].Journal of Hydrology, 2012, 444/445:187-198. doi: 10.1016/j.jhydrol.2012.04.018
    [11]
    WEI Q S, WANG B D, CHEN J F, et al.Recognition on the forming-vanishing process and underlying mechanisms of the hypoxia off the Yangtze River estuary[J].Science China Earth Sciences, 2015, 58(4):628-648. doi: 10.1007/s11430-014-5007-0
    [12]
    GORNY J, BILLON G, LESVEN L, et al.Arsenic behavior in river sediments under redox gradient:a review[J].Science of the Total Environment, 2015, 505:423-434. doi: 10.1016/j.scitotenv.2014.10.011
    [13]
    仇帅.我国近海大气气溶胶中Fe的溶解度及其影响因素[D].青岛: 中国海洋大学, 2015: 37-38.
    [14]
    CANFIELD D E, THAMDRUP B, HANSEN J W.The anaerobic degradation of organic matter in Danish coastal sediments:Iron reduction, manganese reduction, and sulfate reduction[J].Geochimica et Cosmochimica Acta, 1993, 57(16):3867-3883. doi: 10.1016/0016-7037(93)90340-3
    [15]
    昝帅君.辽河口海水及沉积环境细菌丰度时空变化与群落结构浅析[D].大连: 大连海洋大学, 2015.
    [16]
    RUNNELLS D D, LINDBERG R D.Hydrogeochemical exploration for uranium ore deposits:use of the computer model wateqfc[J].Journal of Geochemical Exploration, 1981, 15(1/2/3):37-50. https://www.sciencedirect.com/science/article/pii/0375674281900546
    [17]
    LEVY D B.Oxidation-reduction chemistry oflechuguilla cave seepage[J].Journal of Cave and Karst Studies, 2007, 69(3):351-358.
    [18]
    IOKA S, MURAOKA H, MATSUYAMA K, et al.In situ redox potential measurements as a monitoring technique for hot spring water quality[J].Sustainable Water Resources Management, 2016, 2(4):353-358. doi: 10.1007/s40899-016-0065-4
    [19]
    STEFÁNSSON A, ARNÍRSSON S, SVEINBJÖRNSDÖTTIR Á E.Redox reactions and potentials in natural waters at disequilibrium[J].Chemical Geology, 2005, 221(3/4):289-311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bfe6d03f8137b6812e278e2bf50b2014
    [20]
    洪家珍, 李法西.海洋复杂体系氧化还原状态的描述与确定及独立电对概念的提出[J].海洋学研究, 1983(1):52-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000205559
    [21]
    GIESKES J M.Effect of temperature on the p H of seawater[J].Limnology and Oceanography, 1970, 15(2):329. doi: 10.4319/lo.1970.15.2.0329
    [22]
    ZHAI W D, ZANG K P, HUO C, et al.Occurrence of aragonite corrosive water in the North Yellow Sea, near the Yalu River estuary, during a summer flood[J].Estuarine, Coastal and Shelf Science, 2015, 166:199-208. doi: 10.1016/j.ecss.2015.02.010
    [23]
    业渝光, 和杰, 刁少波, 等.现代黄河三角洲210Pb剖面的标准化方法——粒度相关法[J].地理科学, 1992, 12(4):379-386. http://www.cqvip.com/qk/95809X/199204/720810.html
  • Cited by

    Periodical cited type(3)

    1. 田盼,李亚莉,李莹杰,李虹,王丽婧,宋林旭,纪道斌,赵星星. 三峡水库调度对支流水体叶绿素a和环境因子垂向分布的影响. 环境科学. 2022(01): 295-305 .
    2. 廖辉杰,范德江,逄悦,孙学诗. 河水与海水混合过程中Eh-pH的变化特征及影响因素. 中国海洋大学学报(自然科学版). 2021(04): 100-108 .
    3. 杨凡,纪道斌,王丽婧,李虹,李莹杰. 三峡水库汛后蓄水期典型支流溶解氧与叶绿素a垂向分布特征. 环境科学. 2020(05): 2107-2115 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (3529) PDF downloads (50) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return