• 中文核心期刊
  • 中国科技核心期刊
  • CSCD
  • ISSN 1007-6336
  • CN 21-1168/X
XU Wei, FANG Yinuo, ZHU Zifeng, HOU Wei. Research progress on environmental impact of marine energy development[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE. DOI: 10.12111/j.mes.2024-x-0141
Citation: XU Wei, FANG Yinuo, ZHU Zifeng, HOU Wei. Research progress on environmental impact of marine energy development[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE. DOI: 10.12111/j.mes.2024-x-0141

Research progress on environmental impact of marine energy development

More Information
  • Received Date: June 04, 2024
  • Revised Date: September 14, 2024
  • Accepted Date: September 18, 2024
  • Available Online: May 27, 2025
  • The development of marine energy, such as tidal energy, wave energy and offshore wind energy, has a complex impact on the marine ecological environment. This study conducts a comprehensive visualization analysis through CiteSpace software on 655 relevant publications, systematically summarizing the diverse influences of tidal energy, wave energy and offshore wind energy development on artificial reef construction, noise pollution, wildlife collision risks, electromagnetic field disturbances, benthic habitat alterations, and the overall functioning of marine systems. It further identifies five principal research methods employed in current studies, thereby providing a reference for future scientific research aimed at promoting environmentally sustainable strategies and policies for marine energy exploitation.

  • [1]
    HASSELMAN D J, LI H D, COTTER E, et al. Editorial: novel technologies for assessing the environmental and ecological impacts of marine renewable energy systems[J]. Frontiers in Marine Science, 2022, 9: 990327. doi: 10.3389/fmars.2022.990327
    [2]
    WILLSTEED E, GILL A B, BIRCHENOUGH S N R, et al. Assessing the cumulative environmental effects of marine renewable energy developments: establishing common ground[J]. Science of the Total Environment, 2017, 577: 19-32. doi: 10.1016/j.scitotenv.2016.10.152
    [3]
    PINE M K, SCHMITT P, CULLOCH R M, et al. Providing ecological context to anthropogenic subsea noise: assessing listening space reductions of marine mammals from tidal energy devices[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 49-57.
    [4]
    MOGHADAM H, ORTIZ A C. Modeling morphodynamic impacts and optimization of marine hydrokinetic arrays in shallow offshore environments[J]. Water, 2023, 15(22): 3884. doi: 10.3390/w15223884
    [5]
    BAKER A L, CRAIGHEAD R M, JARVIS E J, et al. Modelling the impact of tidal range energy on species communities[J]. Ocean & Coastal Management, 2020, 193: 105221.
    [6]
    DENG G Z, ZHANG Z R, LI Y, et al. Prospective of development of large-scale tidal current turbine array: an example numerical investigation of Zhejiang, China[J]. Applied Energy, 2020, 264: 114621. doi: 10.1016/j.apenergy.2020.114621
    [7]
    FALLON D, HARTNETT M, OLBERT A, et al. The effects of array configuration on the hydro-environmental impacts of tidal turbines[J]. Renewable Energy, 2014, 64: 10-25.
    [8]
    HAVERSON D, BACON J, SMITH H C M, et al. Modelling the hydrodynamic and morphological impacts of a tidal stream development in Ramsey Sound[J]. Renewable Energy, 2018, 126: 876-887. doi: 10.1016/j.renene.2018.03.084
    [9]
    JOY R, WOOD J D, SPARLING C E, et al. Empirical measures of harbor seal behavior and avoidance of an operational tidal turbine[J]. Marine Pollution Bulletin, 2018, 136: 92-106.
    [10]
    RAMOS V, CARBALLO R, ÁLVAREZ M, et al. Assessment of the impacts of tidal stream energy through high-resolution numerical modeling[J]. Energy, 2013, 61: 541-554. doi: 10.1016/j.energy.2013.08.051
    [11]
    BROADHURST M, ORME C D L. Spatial and temporal benthic species assemblage responses with a deployed marine tidal energy device: a small scaled study[J]. Marine Environmental Research, 2014, 99: 76-84. doi: 10.1016/j.marenvres.2014.03.012
    [12]
    BEVELHIMER M, SCHERELIS C, COLBY J, et al. Hydroacoustic assessment of behavioral responses by fish passing near an operating tidal turbine in the East River, New York[J]. Transactions of the American Fisheries Society, 2017, 146(5): 1028-1042. doi: 10.1080/00028487.2017.1339637
    [13]
    LI G, ZHU W D. Tidal current energy harvesting technologies: a review of current status and life cycle assessment[J]. Renewable and Sustainable Energy Reviews, 2023, 179: 113269. doi: 10.1016/j.rser.2023.113269
    [14]
    LOSSENT J, LEJART M, FOLEGOT T, et al. Underwater operational noise level emitted by a tidal current turbine and its potential impact on marine fauna[J]. Marine Pollution Bulletin, 2018, 131: 323-334.
    [15]
    FOX C J, BENJAMINS S, MASDEN E A, et al. Challenges and opportunities in monitoring the impacts of tidal-stream energy devices on marine vertebrates[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1926-1938. doi: 10.1016/j.rser.2017.06.004
    [16]
    ROMERO-GOMEZ P, RICHMOND M C. Simulating blade-strike on fish passing through marine hydrokinetic turbines[J]. Renewable Energy, 2014, 71: 401-413. doi: 10.1016/j.renene.2014.05.051
    [17]
    BLACKMORE T, BATTEN W M J, BAHAJ A S. Influence of turbulence on the wake of a marine current turbine simulator[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470(2170): 20140331. doi: 10.1098/rspa.2014.0331
    [18]
    BERGILLOS R J, LÓPEZ-RUIZ A, MEDINA-LÓPEZ E, et al. The role of wave energy converter farms on coastal protection in eroding deltas, Guadalfeo, southern Spain[J]. Journal of Cleaner Production, 2018, 171: 356-367.
    [19]
    GALLEGO A, SIDE J, BASTON S, et al. Large scale three-dimensional modelling for wave and tidal energy resource and environmental impact: methodologies for quantifying acceptable thresholds for sustainable exploitation[J]. Ocean & Coastal Management, 2017, 147: 67-77.
    [20]
    TOUGAARD J. Underwater noise from a wave energy converter is unlikely to affect marine mammals[J]. PLoS One, 2015, 10(7): e0132391. doi: 10.1371/journal.pone.0132391
    [21]
    GREAVES D, CONLEY D, MAGAGNA D, et al. Environmental impact assessment: gathering experiences from wave energy test centres in Europe[J]. International Journal of Marine Energy, 2016, 14: 68-79. doi: 10.1016/j.ijome.2016.02.003
    [22]
    HEMERY L G, MACKERETH K F, GUNN C M, et al. Use of a 360-degree underwater camera to characterize artificial reef and fish aggregating effects around marine energy devices[J]. Journal of Marine Science and Engineering, 2022, 10(5): 555.
    [23]
    WITT M J, SHEEHAN E V, BEARHOP S, et al. Assessing wave energy effects on biodiversity: the wave hub experience[J]. Philosophical Transactionsof the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1959): 502-529. doi: 10.1098/rsta.2011.0265
    [24]
    GRECIAN W J, INGER R, ATTRILL M J, et al. Potential impacts of wave-powered marine renewable energy installations on marine birds[J]. Ibis, 2010, 152(4): 683-697. doi: 10.1111/j.1474-919X.2010.01048.x
    [25]
    RAILEANU A, ONEA F, RUSU E. An overview of the expected shoreline impact of the marine energy farms operating in different coastal environments[J]. Journal of Marine Science and Engineering, 2020, 8(3): 228. doi: 10.3390/jmse8030228
    [26]
    COPPING A E, HEMERY L G, OVERHUS D M, et al. Potential environmental effects of marine renewable energy development: the state of the science[J]. Journal of Marine Science and Engineering, 2020, 8(11): 879.
    [27]
    GALPARSORO I, KORTA M, SUBIRANA I, et al. A new framework and tool for ecological risk assessment of wave energy converters projects[J]. Renewable and Sustainable Energy Reviews, 2021, 151: 111539. doi: 10.1016/j.rser.2021.111539
    [28]
    HEMERY L G, GARAVELLI L, COPPING A E, et al. Animal displacement from marine energy development: mechanisms and consequences[J]. Science of the Total Environment, 2024, 917: 170390. doi: 10.1016/j.scitotenv.2024.170390
    [29]
    HUANG Y F, GAN X J, CHIUEH P T. Life cycle assessment and net energy analysis of offshore wind power systems[J]. Renewable Energy, 2017, 102: 98-106. doi: 10.1016/j.renene.2016.10.050
    [30]
    HERBERT-READ J E, KREMER L, BRUINTJES R, et al. Anthropogenic noise pollution from pile-driving disrupts the structure and dynamics of fish shoals[J]. Proceedings of the Royal Society B: Biological Sciences, 2017, 284(1863): 20171627. doi: 10.1098/rspb.2017.1627
    [31]
    JAKUBOWSKA M, URBAN-MALINGA B, OTREMBA Z, et al. Effect of low frequency electromagnetic field on the behavior and bioenergetics of the polychaete Hedistediversicolor[J]. Marine Environmental Research, 2019, 150: 104766.
    [32]
    HEINÄNEN S, ŽYDELIS R, KLEINSCHMIDT B, et al. Satellite telemetry and digital aerial surveys show strong displacement of red-throated divers (Gaviastellata) from offshore wind farms[J]. Marine Environmental Research, 2020, 160: 104989. doi: 10.1016/j.marenvres.2020.104989
    [33]
    RAOUX A, LASSALLE G, PEZY J P, et al. Measuring sensitivity of two OSPAR indicators for a coastal food web model under offshore wind farm construction[J]. Ecological Indicators, 2019, 96: 728-738. doi: 10.1016/j.ecolind.2018.07.014
    [34]
    KELSEY E C, FELIS J J, CZAPANSKIY M, et al. Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf[J]. Journal of Environmental Management, 2018, 227: 229-247. doi: 10.1016/j.jenvman.2018.08.051
    [35]
    FARR H, RUTTENBERG B, WALTER R K, et al. Potential environmental effects of deepwater floating offshore wind energy facilities[J]. Ocean & Coastal Management, 2021, 207: 105611.
    [36]
    LI C, MOGOLLÓN J M, TUKKER A, et al. Environmental impacts of global offshore wind energy development until 2040[J]. Environmental Science & Technology, 2022, 56(16): 11567-11577.
    [37]
    BERGSTRÖM L, SUNDQVIST F, BERGSTRÖM U. Effects of an offshore wind farm on temporal and spatial patterns in the demersal fish community[J]. Marine Ecology Progress Series, 2013, 485: 199-210. doi: 10.3354/meps10344
    [38]
    CAUSON P D, GILL A B. Linking ecosystem services with epibenthic biodiversity change following installation of offshore wind farms[J]. Environmental Science & Policy, 2018, 89: 340-347.
    [39]
    MANGI S C. The impact of offshore wind farms on marine ecosystems: a review taking an ecosystem services perspective[J]. Proceedings of the IEEE, 2013, 101(4): 999-1009. doi: 10.1109/JPROC.2012.2232251
    [40]
    DEGRAER S, BRABANT R, RUMES B. Offshore wind farms in the Belgian part of the North Sea: heading for an understanding of environmental impacts[M]. Brussel: Royal Belgian Institute of Natural Sciences, 2012.
    [41]
    WELCKER J, NEHLS G. Displacement of seabirds by an offshore wind farm in the North Sea[J]. Marine Ecology Progress Series, 2016, 554: 173-182. doi: 10.3354/meps11812
    [42]
    WILLIAMS J P, JACO E M, SCHOLZ Z, et al. Red rock crab (Cancer productus) movement is not influenced by electromagnetic fields produced by a submarine power transmission cable[J]. Continental Shelf Research, 2023, 269: 105145.
    [43]
    RIVIER A, BENNIS AC, PINON G, et al. Parameterization of wind turbine impacts on hydrodynamics and sediment transport[J]. Ocean Dynamics, 2016, 66(10): 1285-1299. doi: 10.1007/s10236-016-0983-6
    [44]
    WANG T, RU X S, DENG B N, et al. Evidence that offshore wind farms might affect marine sediment quality and microbial communities[J]. Science of the Total Environment, 2023, 856: 158782. doi: 10.1016/j.scitotenv.2022.158782
  • Related Articles

    [1]JIN Fei, WANG Ying, CONG Yi, ZHANG Mingxing, LI Zhaochuan, LOU Yadi, YAO Ziwei, WANG Juying. Research on environmental priority pollutants in seawater of China by COMMPS and DYNAMEC methods[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(6): 892-900. DOI: 10.12111/j.mes.2023-x-0094
    [2]ZHANG Zi-yue, YANG Wei, SUN Tao, SHU An-ping, FENG Jian-feng, LIU Hai-fei. Energy fluxes and trophic structure of an artificial reef ecosystem in Juehua island based on Ecopath model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(4): 636-643. DOI: 10.12111/j.mes.20210013
    [3]WU Yi-fan, ZHANG Yi-fei, FANG Xin, LIAN Ping-ting, LV Xin. Ecological restoration effect evaluation of artificial reefs with choquet integral algorithom[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(3): 467-473. DOI: 10.12111/j.mes.2021-0093
    [4]TIAN Li-na, YANG Jin-sheng, ZHOU You-lin, CAO Rui, ZHANG Meng, PAN Yu-ying. The primary study on antioxidase activities of Boleophthalmus pectinirostris exposed to crude oil in intertidal zone[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(1): 135-141. DOI: 10.12111/j.mes.20200170
    [5]WEI Hai-feng, TIAN Shan-chuan, ZHAO Xiao-yi, LIU Chang-fa, ZHOU Ji-ti. Study on the bioaccumulation kinetics of three PAHs by Apostichopus japonicus[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2019, 38(5): 663-668. DOI: 10.12111/j.mes20190503
    [6]XU Yan, BAO Chen-guang, LIANG Bin, LAN Dong-dong, ZHU Rong-juan, YU Chun-yan, MA Ming-hui. Suitability evaluation of artificial reefs site selection in Tianjin offshore waters area[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(6): 846-852, 867. DOI: 10.13634/j.cnki.mes20160608
    [7]QIAO Ling, ZHEN Yu, MI Tie-Zhu. Review of the brown tides caused by Aureococcus anophagefferens[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(3): 473-480. DOI: 10.13634/j.cnki.mes20160324
    [8]YANG Yi, LI Wei-zun, ZHANG Jing-kai, WANG Jing-yu. Discussion on marine environmental pollution prevention and control in Bohai Bay Tianjin Area[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(1): 49-54. DOI: 10.13634/j.cnki.mes.2016.01.008
    [9]LI Lei, JIANG Mei, SHEN Xin-qiang, WANG Yun-long, WU Qing-yuan, NIU Jun-xiang, XU Gao-peng. Effects of Cr(VI) on the activities of SOD,concentration of MDA and MTs inhepatopancreas and gilltsissue of Portunus trituberculatus[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(6): 838-843. DOI: 10.13634/j.cnki.mes.2015.06.007
    [10]LI Lei, JIANG Mei, SHEN Xin-qiang, WANG Yun-long, WU Qing-yuan, NIU Jun-xiang, XU Gao-peng. Effects of benzo[a]pyrene exposure on biomarkers in Exopalaemon carinicauda liver[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(4): 513-518. DOI: 10.13634/j.cnki.mes.2015.04.007

Catalog

    Article Metrics

    Article views (26) PDF downloads (10) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return