Citation: | ZHANG Yuting, CHEN Zhiqiang, LIN Chunxiang, MU Jingli. Application and prospects of fish olfactory neurobehavior in marine ecotoxicology[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(4): 503-513, 523. DOI: 10.12111/j.mes.2024-x-0068 |
Fish can obtain important environmental information in the water by perceiving chemicals at minute amounts using their olfactory system, and thereby adjust various life behaviors including predation, courtship, migration and avoiding predators. Fish olfactory neurobehavior is an ideal toxicological endpoint due to its sensitivity to pollutants and ecological importance. Applying fish olfactory neurobehavior to marine ecotoxicology studies will deepen our understanding of the ecological risks of marine pollutants and provide scientific bases for the formulation of marine water quality criteria. This article briefly describes the olfactory system and the molecular neural processes of olfaction in fish and summarizes the current application and prospects of fish olfactory neurobehavior in the field of ecotoxicology.
[1] |
魏 凯, 陈春山, 张旭光, 等. 鱼类嗅觉系统功能与行为生态研究进展[J]. 海洋渔业, 2017, 39(6): 723-730. doi: 10.3969/j.issn.1004-2490.2017.06.014
|
[2] |
张桂蓉, 魏开建, 严安生. 乌鳢嗅觉器官发育的组织学研究[J]. 西南农业大学学报(自然科学版), 2003, 25(6): 542-545.
|
[3] |
邢迎春, 张振玲, 赵亚辉, 等. 鱼类嗅觉器官的构造与功能[J]. 生物学通报, 2007, 42(9): 13-14. doi: 10.3969/j.issn.0006-3193.2007.09.005
|
[4] |
VOLZ S, SCHIWY S, HOLLERT H. Olfactory toxicity in fish-Why we should care about it[J]. Integrated Environmental Assessment and Management, 2016, 12(3): 597-598. doi: 10.1002/ieam.1777
|
[5] |
TIERNEY K B, BALDWIN D H, HARA T J, et al. Olfactory toxicity in fishes[J]. Aquatic Toxicology, 2010, 96(1): 2-26. doi: 10.1016/j.aquatox.2009.09.019
|
[6] |
ROBINSON P D. Behavioural toxicity of organic chemical contaminants in fish: application to ecological risk assessments (ERAs)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66(7): 1179-1188. doi: 10.1139/F09-069
|
[7] |
刘 东, 张振玲, 赵亚辉, 等. 鱼类嗅觉器官的形态与生理研究进展[J]. 动物学杂志, 2005, 40(6): 122-128. doi: 10.3969/j.issn.0250-3263.2005.06.023
|
[8] |
赖晓健, 洪万树, 王桂忠, 等. 中华乌塘鳢嗅觉系统孕酮受体的免疫细胞化学研究[J]. 中国水产科学, 2011, 18(5): 1043-1050.
|
[9] |
陈 铭, 赵金良. 鳜嗅囊组织结构与早期发育[J]. 动物学杂志, 2022, 57(3): 447-454.
|
[10] |
马细兰, 洪万树, 张其永, 等. 中华乌塘鳢嗅觉器官的形态结构[J]. 中国水产科学, 2005, 12(5): 525-532. doi: 10.3321/j.issn:1005-8737.2005.05.001
|
[11] |
KIM H T, YUN S W, PARK J Y. Anatomy, ultrastructure and histology of the olfactory organ of the largemouth bass Micropterus salmoides, centrarchidae[J]. Applied Microscopy, 2019, 49(1): 18. doi: 10.1186/s42649-019-0023-3
|
[12] |
SATO K, SORENSEN P W. The chemical sensitivity and electrical activity of individual olfactory sensory neurons to a range of sex pheromones and food odors in the goldfish[J]. Chemical Senses, 2018, 43(4): 249-260. doi: 10.1093/chemse/bjy016
|
[13] |
CALVO-OCHOA E, BYRD-JACOBS C A. The olfactory system of zebrafish as a model for the study of neurotoxicity and injury: implications for neuroplasticity and disease[J]. International Journal of Molecular Sciences, 2019, 20(7): 1639. doi: 10.3390/ijms20071639
|
[14] |
TRIANA-GARCIA P A, NEVITT G A, PESAVENTO J B, et al. Gross morphology, histology, and ultrastructure of the olfactory rosette of a critically endangered indicator species, the delta smelt, Hypomesus transpacificus[J]. Journal of Comparative Physiology A, 2021, 207(5): 597-616. doi: 10.1007/s00359-021-01500-7
|
[15] |
PINTOS S, RINCON-CAMACHO L, PANDOLFI M, et al. Morphology and immunohistochemistry of the olfactory organ in the bloodfin tetra, Aphyocharax anisitsi (Ostariophysi: Characidae)[J]. Journal of Morphology, 2020, 281(8): 986-996. doi: 10.1002/jmor.21227
|
[16] |
AHUJA G, NIA S B, ZAPILKO V, et al. Kappe neurons, a novel population of olfactory sensory neurons[J]. Scientific Reports, 2014, 4(1): 4037. doi: 10.1038/srep04037
|
[17] |
KOWATSCHEW D, BOZORG NIA S, HASSAN S, et al. Spatial organization of olfactory receptor gene choice in the complete V1R-related ORA family of zebrafish[J]. Scientific Reports, 2022, 12(1): 14816. doi: 10.1038/s41598-022-17900-x
|
[18] |
陈 明, 彭作刚, 何舜平. 青鳉与三刺鱼嗅觉受体(OR)基因的鉴定与进化分析[J]. 中国科学 C辑: 生命科学, 2009, 39(11): 1057-1068.
|
[19] |
朱国利, 唐文乔, 刘 东. 鱼类嗅觉受体基因研究进展[J]. 水产学报, 2015, 39(6): 916-927.
|
[20] |
ALIOTO T S, NGAI J. The odorant receptor repertoire of teleost fish[J]. BMC Genomics, 2005, 6(1): 1-14.
|
[21] |
MAXIMINO C, DO CARMO SILVA R X, DOS SANTOS CAMPOS K, et al. Sensory ecology of ostariophysan alarm substances[J]. Journal of Fish Biology, 2019, 95(1): 274-286. doi: 10.1111/jfb.13844
|
[22] |
WAKISAKA N, MIYASAKA N, KOIDE T, et al. An adenosine receptor for olfaction in fish[J]. Current Biology, 2017, 27(10): 1437-1447. e4.
|
[23] |
MIYASAKA N, ARGANDA-CARRERAS I, WAKISAKA N, et al. Olfactory projectome in the zebrafish forebrain revealed by genetic single-neuron labelling[J]. Nature Communications, 2014, 5: 3639. doi: 10.1038/ncomms4639
|
[24] |
KERMEN F, FRANCO L M, WYATT C, et al. Neural circuits mediating olfactory-driven behavior in fish[J]. Frontiers in Neural Circuits, 2013, 7: 62.
|
[25] |
WACHOWIAK M, SHIPLEY M T. Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb[J]. Seminars in Cell & Developmental Biology, 2006, 17(4): 411-423.
|
[26] |
AHUJA G, IVANDIĆ I, SALTÜRK M, et al. Zebrafish crypt neurons project to a single, identified mediodorsal glomerulus[J]. Scientific Reports, 2013, 3(1): 2063. doi: 10.1038/srep02063
|
[27] |
LABERGE F, HARA T J. Neurobiology of fish olfaction: a review[J]. Brain Research Reviews, 2001, 36(1): 46-59. doi: 10.1016/S0165-0173(01)00064-9
|
[28] |
HAMDANI E H, DØVING K B. The functional organization of the fish olfactory system[J]. Progress in Neurobiology, 2007, 82(2): 80-86. doi: 10.1016/j.pneurobio.2007.02.007
|
[29] |
HAMDANI E H, ALEXANDER G, DØVING K B. Projection of sensory neurons with microvilli to the lateral olfactory tract indicates their participation in feeding behaviour in crucian carp[J]. Chemical Senses, 2001, 26(9): 1139-1144. doi: 10.1093/chemse/26.9.1139
|
[30] |
HUANG L, ZHANG W X, HAN Y, et al. Anti-depressant fluoxetine hampers olfaction of goldfish by interfering with the initiation, transmission, and processing of olfactory signals[J]. Environmental Science & Technology, 2022, 56(22): 15848-15859.
|
[31] |
赖晓健, 洪万树, 张其永. 鱼类嗅觉系统和性信息素受体的研究进展[J]. 动物学杂志, 2013, 48(2): 298-305.
|
[32] |
赖晓健, 洪万树, 杨 薇. 中华乌塘鳢纤毛嗅神经元的分离及其电生理[J]. 中国水产科学, 2013, 20(2): 286-292.
|
[33] |
马细兰, 洪万树, 柴敏娟, 等. 中华乌塘鳢对性外激素嗅电反应的比较[J]. 厦门大学学报(自然科学版), 2003, 42(6): 781-786.
|
[34] |
HINO H, MILES N G, BANDOH H, et al. Molecular biological research on olfactory chemoreception in fishes[J]. Journal of Fish Biology, 2009, 75(5): 945-959. doi: 10.1111/j.1095-8649.2009.02341.x
|
[35] |
REISERT J, REINGRUBER J. Ca2+-activated Cl− current ensures robust and reliable signal amplification in vertebrate olfactory receptor neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(3): 1053-1058.
|
[36] |
KORSCHING S I. The Physiology of Fishes [M]. 5th ed. Boca Raton: Suzanne Currie, David H. Evans, 2020: 191-202.
|
[37] |
YAMAMOTO M. Comparative morphology of the peripheral olfactory organ in teleosts[J]. Chemoreception in Fishes, 1982: 39-59.
|
[38] |
CHEN X, Li L, CHENG J, et al. Molecular staging of marine medaka: A model organism for marine ecotoxicity study[J]. Marine Pollution Bulletin, 2011, 63(5-12): 309-317. doi: 10.1016/j.marpolbul.2011.03.042
|
[39] |
ZHANG T Y, HUANG S, QIU T H, et al. Optimal salinity for rearing Chinese black sleeper (Bostrychus sinensis) fry[J]. Aquaculture, 2017, 476: 37-43. doi: 10.1016/j.aquaculture.2017.04.004
|
[40] |
ZHANG T Y, HONG W S, LIU D T, et al. Involvement of membrane progestin receptor beta (mPRβ/Paqr8) in sex pheromone progestin-induced expression of luteinizing hormone in the pituitary of male Chinese Black Sleeper (Bostrychus Sinensis )[J]. Frontiers in Endocrinology, 2018, 9: 397. doi: 10.3389/fendo.2018.00397
|
[41] |
FRANCO-RESTREPO J E, FORERO D A, VARGAS R A. A review of freely available, open-source software for the automated analysis of the behavior of adult zebrafish[J]. Zebrafish, 2019, 16(3): 223-232.
|
[42] |
DELCOURT J, DENOËL M, YLIEFF M, et al. Video multitracking of fish behaviour: a synthesis and future perspectives[J]. Fish and Fisheries, 2013, 14(2): 186-204. doi: 10.1111/j.1467-2979.2012.00462.x
|
[43] |
ABHISHEK P R N, BADER H, AHMED A, et al. Manganese chloride (MnCl2) induced novel model of Parkinson’s disease in adult Zebrafish; Involvement of oxidative stress, neuroinflammation and apoptosis pathway[J]. Biomedicine Pharmacotherapy, 2022, 155: 113697. doi: 10.1016/j.biopha.2022.113697
|
[44] |
TETSUYA K, NOBUHIKO M, KOZO M, et al. Olfactory neural circuitry for attraction to amino acids revealed by transposon-mediated gene trap approach in zebrafish[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(24): 9884-9889.
|
[45] |
MCINTYRE J K, BALDWIN H D, MEADOR J P, et al. Chemosensory deprivation in juvenile coho salmon exposed to dissolved copper under varying water chemistry conditions[J]. Environmental Science Technology, 2008, 42(4): 1352-1358.
|
[46] |
MARYOUNG A L, BLUNT B, TIERNEY B K, et al. Sublethal toxicity of chlorpyrifos to salmonid olfaction after hypersaline acclimation[J]. Aquatic Toxicology, 2015, 161: 94-101. doi: 10.1016/j.aquatox.2015.01.026
|
[47] |
MAGNUSON T J, FULLER N, MCGRUER V, et al. Effect of temperature and dietary pesticide exposure on neuroendocrine and olfactory responses in juvenile Chinook salmon (Oncorhynchus tshawytscha)[J]. Environmental Pollution (Barking, Essex: 1987), 2022, 318: 120938.
|
[48] |
DIXSON D L, MUNDAY P L, JONES G P. Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues[J]. Ecology Letters, 2010, 13(1): 68-75. doi: 10.1111/j.1461-0248.2009.01400.x
|
[49] |
HUBBARD P C, BARATA E N, CANARIO A V M. Olfactory sensitivity to changes in environmental [Ca(2+)] in the marine teleost Sparus aurata[J]. The Journal of Experimental Biology, 2000, 203(Pt 24): 3821-3829.
|
[50] |
DEW W A, WOOD C M, PYLE G G. Effects of continuous copper exposure and calcium on the olfactory response of fathead minnows[J]. Environmental Science Technology, 2012, 46(16): 9019-9026. doi: 10.1021/es300670p
|
[51] |
KENNEDY C J, STECKO P, TRUELSON B, et al. Dissolved organic carbon modulates the effects of copper on olfactory-mediated behaviors of chinook salmon[J]. Environmental Toxicology and Chemistry, 2012, 31(10): 2281-2288. doi: 10.1002/etc.1948
|
[52] |
FORD A T, ÅGERSTRAND M, BROOKS B W, et al. The role of behavioral ecotoxicology in environmental protection[J]. Environmental Science Technology, 2021, 55(9): 5620-5628. doi: 10.1021/acs.est.0c06493
|
[53] |
MA E Y, HEFFERN K, CHERESH J, et al. Differential copper-induced death and regeneration of olfactory sensory neuron populations and neurobehavioral function in larval zebrafish[J]. NeuroToxicology, 2018, 69: 141-151. doi: 10.1016/j.neuro.2018.10.002
|
[54] |
DEW W A, AZIZISHIRAZI A, PYLE G G. Contaminant-specific targeting of olfactory sensory neuron classes: connecting neuron class impairment with behavioural deficits[J]. Chemosphere, 2014, 112: 519-525. doi: 10.1016/j.chemosphere.2014.02.047
|
[55] |
AZIZISHIRAZI A, DEW W A, BOUGAS B, et al. Dietary sodium protects fish against copper-induced olfactory impairment[J]. Aquatic Toxicology, 2015, 161: 1-9. doi: 10.1016/j.aquatox.2015.01.017
|
[56] |
MCINTYRE J K, BALDWIN D H, BEAUCHAMP D A, et al. Low-level copper exposures increase visibility and vulnerability of juvenile coho salmon to cutthroat trout predators[J]. Ecological Applications, 2012, 22(5): 1460-1471.
|
[57] |
WANG L, BAMMLER T K, BEYER R P, et al. Copper-induced deregulation of microRNA expression in the zebrafish olfactory system[J]. Environmental Science & Technology, 2013, 47(13): 7466-7474.
|
[58] |
RAZMARA P, IMBERY J J, KOIDE E, et al. Mechanism of copper nanoparticle toxicity in rainbow trout olfactory mucosa[J]. Environmental Pollution, 2021, 284: 117141. doi: 10.1016/j.envpol.2021.117141
|
[59] |
TAKESONO A, DIMITRIADOU S, CLARK N J, et al. Zinc oxide nanoparticles disrupt development and function of the olfactory sensory system impairing olfaction-mediated behaviour in zebrafish[J]. Environment International, 2023, 180: 108227. doi: 10.1016/j.envint.2023.108227
|
[60] |
ABREU M S, GIACOMINI A C V V, RODRIGUEZ R, et al. Effects of ZnSO4-induced peripheral anosmia on zebrafish behavior and physiology[J]. Behavioural Brain Research, 2017, 320: 275-281. doi: 10.1016/j.bbr.2016.12.014
|
[61] |
LAZZARI M, BETTINI S, MILANI L, et al. Response of olfactory sensory neurons to mercury ions in zebrafish: an immunohistochemical study[J]. Microscopy and Microanalysis, 2022, 28(1): 227-242. doi: 10.1017/S1431927621013763
|
[62] |
VOLZ S N, HAUSEN J, NACHEV M, et al. Short exposure to cadmium disrupts the olfactory system of zebrafish (Danio rerio) – Relating altered gene expression in the olfactory organ to behavioral deficits[J]. Aquatic Toxicology, 2020, 226: 105555. doi: 10.1016/j.aquatox.2020.105555
|
[63] |
HEFFERN K, TIERNEY K, GALLAGHER E P. Comparative effects of cadmium, zinc, arsenic and chromium on olfactory-mediated neurobehavior and gene expression in larval zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2018, 201: 83-90. doi: 10.1016/j.aquatox.2018.05.016
|
[64] |
MATZ C J, KRONE P H. Cell death, stress-responsive transgene activation, and deficits in the olfactory system of larval zebrafish following cadmium exposure[J]. Environmental Science & Technology, 2007, 41(14): 5143-5148.
|
[65] |
FAUCHER K, FLORIANI M, GILBIN R, et al. Uranium-induced sensory alterations in the zebrafish Danio rerio[J]. Aquatic Toxicology, 2012, 124/125: 94-105. doi: 10.1016/j.aquatox.2012.08.004
|
[66] |
SZYMKOWICZ D B, SIMS K C, SCHWENDINGER K L, et al. Exposure to arsenic during embryogenesis impairs olfactory sensory neuron differentiation and function into adulthood[J]. Toxicology, 2019, 420: 73-84. doi: 10.1016/j.tox.2019.04.005
|
[67] |
KARRI V, SCHUHMACHER M, KUMAR V. Heavy metals (Pb, Cd, As and MeHg) as risk factors for cognitive dysfunction: A general review of metal mixture mechanism in brain[J]. Environmental Toxicology and Pharmacology, 2016, 48: 203-213. doi: 10.1016/j.etap.2016.09.016
|
[68] |
TIERNEY K B, SINGH C R, ROSS P S, et al. Relating olfactory neurotoxicity to altered olfactory-mediated behaviors in rainbow trout exposed to three currently-used pesticides[J]. Aquatic Toxicology, 2007, 81(1): 55-64. doi: 10.1016/j.aquatox.2006.11.006
|
[69] |
TILTON F A, TILTON S C, BAMMLER T K, et al. Transcriptional impact of organophosphate and metal mixtures on olfaction: copper dominates the chlorpyrifos-induced response in adult zebrafish[J]. Aquatic Toxicology, 2011, 102(3/4): 205-215. doi: 10.1016/j.aquatox.2011.01.012
|
[70] |
VOLZ S N, HAUSEN J, SMITH K, et al. Do you smell the danger? Effects of three commonly used pesticides on the olfactory-mediated antipredator response of zebrafish (Danio rerio)[J]. Chemosphere, 2020, 241: 124963. doi: 10.1016/j.chemosphere.2019.124963
|
[71] |
HOSSEINZADEH M, AMIRI B M, POORBAGHER H, et al. The effects of diazinon on the cell types and gene expression of the olfactory epithelium and whole-body hormone concentrations in the Persian sturgeon (Acipenser persicus)[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2020, 250: 110809.
|
[72] |
闫 雪, 袁小凡, 赵庆余, 等. 鱼藤酮致帕金森病大鼠模型的行为学与病理损伤的研究[J]. 泰山医学院学报, 2019, 40(1): 7-10.
|
[73] |
WANG Y L, LIU W W, YANG J, et al. Parkinson’s disease-like motor and non-motor symptoms in rotenone-treated zebrafish[J]. Neurotoxicology, 2017, 58: 103-109. doi: 10.1016/j.neuro.2016.11.006
|
[74] |
李 杨, 戴 莹, 马 帅, 等. QuEChERS-液相色谱−串联质谱联用法测定草莓中毒死蜱及其代谢物[J]. 食品安全质量检测学报, 2017, 8(09): 3531-3535. doi: 10.3969/j.issn.2095-0381.2017.09.042
|
[75] |
SUD D, KUMAr J, KAUR P, et al. Toxicity, natural and induced degradation of chlorpyrifos[J]. Journal of the Chilean Chemical Society, 2020, 65(2): 4807-4816. doi: 10.4067/S0717-97072020000204807
|
[76] |
WHITE E J, KOUNELIS S K, BYRD-JACOBS C A. Plasticity of glomeruli and olfactory-mediated behavior in zebrafish following detergent lesioning of the olfactory epithelium[J]. Neuroscience, 2015, 284: 622-631. doi: 10.1016/j.neuroscience.2014.10.036
|
[77] |
IQBAL T, BYRD-JACOBS C. Rapid degeneration and regeneration of the zebrafish olfactory epithelium after Triton X-100 application[J]. Chemical Senses, 2010, 35(5): 351-361. doi: 10.1093/chemse/bjq019
|
[78] |
HUANG L, ZHANG W X, ZHOU W S, et al. Behaviour, a potential bioindicator for toxicity analysis of waterborne microplastics: a review[J]. TrAC Trends in Analytical Chemistry, 2023, 162: 117044. doi: 10.1016/j.trac.2023.117044
|
[79] |
SHI W, SUN S G, HAN Y, et al. Microplastics impair olfactory-mediated behaviors of goldfish Carassius auratus[J]. Journal of Hazardous Materials, 2021, 409: 125016. doi: 10.1016/j.jhazmat.2020.125016
|
[80] |
BALDWIN D H, TATARA C P, SCHOLZ N L. Copper-induced olfactory toxicity in salmon and steelhead: extrapolation across species and rearing environments[J]. Aquatic Toxicology, 2011, 101(1): 295-297. doi: 10.1016/j.aquatox.2010.08.011
|
[81] |
JONES J, WELLBAND K, ZIELINSKI B, et al. Transcriptional basis of copper-induced olfactory impairment in the sea lamprey, a primitive invasive fish[J]. G3: Genes, Genomes, Genetics, 2019, 9(3): 933-941. doi: 10.1534/g3.118.200920
|
[82] |
WANG L, ESPINOZA M H, GALLAGHER P E. Brief exposure to copper induces apoptosis and alters mediators of olfactory signal transduction in coho salmon[J]. Chemosphere, 2013, 93(10): 2639-2643. doi: 10.1016/j.chemosphere.2013.08.044
|
[83] |
WILLIAMS R C, GALLAGHER P E. Effects of cadmium on olfactory mediated behaviors and molecular biomarkers in coho salmon (Oncorhynchus kisutch)[J]. Aquatic Toxicology, 2013, 140-141: 295-302. doi: 10.1016/j.aquatox.2013.06.010
|
[84] |
WILLIAMS R C, MACDONALD W J, BAMMLER K T, et al. From the cover: cadmium exposure differentially alters odorant-driven behaviors and expression of olfactory receptors in juvenile Coho Salmon (Oncorhynchus kisutch)[J]. Toxicological Sciences: an Official Journal of the Society of Toxicology, 2016, 154(2): 267-277. doi: 10.1093/toxsci/kfw172
|
[85] |
LAZZARI M, BETTINI S, MILANI L, et al. Differential nickel-induced responses of olfactory sensory neuron populations in zebrafish[J]. Aquatic Toxicology, 2019, 206: 14-23. doi: 10.1016/j.aquatox.2018.10.011
|
[86] |
REHNBERG B C, SCHRECK C B. Acute metal toxicology of olfaction in coho salmon: behavior, receptors, and odor-metal complexation[J]. Bull. Environ. Contam. Toxicol. (United States), 1986, 36(4).
|
[87] |
WANG L, ESPINOZA H M, MACDONALD J W, et al. Olfactory transcriptional analysis of salmon exposed to mixtures of chlorpyrifos and malathion reveal novel molecular pathways of neurobehavioral injury[J]. Toxicological Sciences, 2016, 149(1): 145-157. doi: 10.1093/toxsci/kfv223
|
[88] |
SCHOLZ N L, TRUELOVE N K, LABENIA J S, et al. Dose-additive inhibition of chinook salmon acetylcholinesterase activity by mixtures of organophosphate and carbamate insecticides[J]. Environmental Toxicology and Chemistry: An International Journal, 2006, 25(5): 1200-1207.
|
[89] |
TIERNEY K B, SAMPSON J L, ROSS P S, et al. Salmon olfaction is impaired by an environmentally realistic pesticide mixture[J]. Environmental Science & Technology, 2008, 42(13): 4996-5001.
|
[90] |
TANG L Z, LIU M Y, HU C Y, et al. Binary exposure to hypoxia and perfluorobutane sulfonate disturbs sensory perception and chromatin topography in marine medaka embryos[J]. Environmental Pollution, 2020, 266(Pt 3): 115284.
|
[91] |
HUANG L, ZHANG WX, TONG D F, et al. Triclosan and triclocarban weaken the olfactory capacity of goldfish by constraining odorant recognition, disrupting olfactory signal transduction, and disturbing olfactory information processing[J]. Water Research, 2023, 233: 119736. doi: 10.1016/j.watres.2023.119736
|