Citation: | WANG Jiazhen, XU Tingting, CHENG Haodong, XU Genbo, YU Weiqiong, ZHENG Chunmiao, XU Xiangrong, QIU Wenhui. Environmental behavior and toxic effects of biodegradable plastics[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(2): 186-200. DOI: 10.12111/j.mes.2023-x-0347 |
Due to unreasonable control, plastic pollution has become an important problem of environmental pollution, and people’s demand for new, green biodegradable plastics is increasing. However, studies have shown that biodegradable plastics also have negative effects on the ecological environment and human health. This paper reviewed nearly 10,000 literatures from 2000 to 2023, reviewed the application, development history, types, pollution status, environmental behavior and toxic effects of biodegradable plastics, and proposed future research directions for biodegradable plastics, aiming to provide references for ecological and health risk assessment, rational use and effective regulation of biodegradable plastics.
[1] |
ANDRADY A L. Microplastics in the marine environment[J]. Marine Pollution Bulletin, 2011, 62(8): 1596-1605. doi: 10.1016/j.marpolbul.2011.05.030
|
[2] |
LAVOIE J, BOULAY A M, BULLE C. Aquatic micro- and nano-plastics in life cycle assessment: Development of an effect factor for the quantification of their physical impact on biota[J]. Journal of Industrial Ecology, 2022, 26(6): 2123-2135. doi: 10.1111/jiec.13140
|
[3] |
GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. doi: 10.1126/sciadv.1700782
|
[4] |
SRIDHARAN S, KUMAR M, BOLAN N S, et al. Are microplastics destabilizing the global network of terrestrial and aquatic ecosystem services?[J]. Environmental Research, 2021, 198: 111243. doi: 10.1016/j.envres.2021.111243
|
[5] |
KHALIL H P S A, DAVOUDPOUR Y, SAURABH C K, et al. A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications[J]. Renewable and Sustainable Energy Reviews, 2016, 64: 823-836. doi: 10.1016/j.rser.2016.06.072
|
[6] |
FAZITA M R N, JAYARAMAN K, BHATTACHARYYA D, et al. Green composites made of bamboo fabric and poly (Lactic) acid for packaging applications-a review[J]. Materials, 2016, 9(6): 435. doi: 10.3390/ma9060435
|
[7] |
MEYS R, KÄTELHÖN A, BACHMANN M, et al. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy[J]. Science, 2021, 374(6563): 71-76. doi: 10.1126/science.abg9853
|
[8] |
POPA E E, RAPA M, POPA O, et al. Polylactic acid/cellulose fibres based composites for food packaging applications[J]. Materiale Plastice, 2017, 54(4): 673-677. doi: 10.37358/MP.17.4.4923
|
[9] |
GOLDBERGER J R, DEVETTER L W, DENTZMAN K E. Polyethylene and biodegradable plastic mulches for strawberry production in the united states: experiences and opinions of growers in three regions[J]. Horttechnology, 2019, 29(5): 619-628. doi: 10.21273/HORTTECH04393-19
|
[10] |
中国可降解材料市场研究报告[C]. 2022. 艾瑞咨询系列研究报告, 2022: 42.
|
[11] |
MAZHANDU Z S, MUZENDA E, MAMVURA T A, et al. Integrated and consolidated review of plastic waste management and bio-based biodegradable plastics: challenges and opportunities[J]. Sustainability, 2020, 12(20): 8360. doi: 10.3390/su12208360
|
[12] |
BOZAROVA G K, KHACHATUROV A E. The place of biodegradable polymers in the total volume of plastics production[J]. Theoretical and Applied Ecology, 2020 (4): 93-99. doi: 10.25750/1995-4301-2020-4-093-099
|
[13] |
BOEY J Y, MOHAMAD L, KHOK Y S, et al. A review of the applications and biodegradation of polyhydroxyalkanoates and poly(lactic acid) and its composites[J]. Polymers, 2021, 13(10): 1544. doi: 10.3390/polym13101544
|
[14] |
杨惠娣, 翁云宣, 胡汉杰. 中国生物降解塑料开发历史、现状和发展趋势[J]. 中国塑料, 2005, 19(3): 1-6.
|
[15] |
张宏博, 刘焦萍, 赵苏杭, 等. 生物可降解塑料发展现状及展望[J]. 现代化工, 2023, 43(4): 9-12,17.
|
[16] |
陈国强, 王 颖. 中国“生物基材料”研究和产业化进展[J]. 生物工程学报, 2015, 31(6): 955-967.
|
[17] |
刁晓倩, 翁云宣, 黄志刚, 等. 国内生物基材料产业发展现状[J]. 生物工程学报, 2016, 32(6): 715-725.
|
[18] |
于淑兰. 可降解塑料分类及生产应用研究[J]. 山东化工, 2022, 51(24): 138-140,143.
|
[19] |
李 玺, 杨慧娴, 雷 莹, 等. 淀粉基可降解塑料研究进展[J]. 广东化工, 2020, 47(17): 73-74.
|
[20] |
QIN M, CHEN C Y, SONG B, et al. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments?[J]. Journal of Cleaner Production, 2021, 312: 127816. doi: 10.1016/j.jclepro.2021.127816
|
[21] |
CHIDAMBARAMPADMAVATHY K, KARTHIKEYAN O P, HEIMANN K. Sustainable bio-plastic production through landfill methane recycling[J]. Renewable & Sustainable Energy Reviews, 2017, 71: 555-562.
|
[22] |
OKOFFO E D, CHAN C M, RAUERT C, et al. Identification and Quantification of Micro-Bioplastics in Environmental Samples by Pyrolysis-Gas Chromatography-Mass Spectrometry[J]. Environmental science & technology, 2022, 56(19): 13774-13785.
|
[23] |
MANI T, PRIMPKE S, LORENZ C, et al. Microplastic Pollution in Benthic Midstream Sediments of the Rhine River[J]. Environmental science & technology, 2019, 53(10): 6053-6062.
|
[24] |
QIAN Y R, SHANG Y X, ZHENG Y X, et al. Temporal and spatial variation of microplastics in Baotou section of Yellow River, China[J]. Journal of Environmental Management, 2023, 338: 117803. doi: 10.1016/j.jenvman.2023.117803
|
[25] |
PENG C, ZHANG X F, ZHANG X Y, et al. Bacterial Community under the Influence of Microplastics in Indoor Environment and the Health Hazards Associated with Antibiotic Resistance Genes[J]. Environmental science & technology, 2022, 56(1): 422-432.
|
[26] |
PEEKEN I, PRIMPKE S, BEYER B, et al. Arctic sea ice is an important temporal sink and means of transport for microplastic[J]. Nature Communications, 2018, 9(1): 1505. doi: 10.1038/s41467-018-03825-5
|
[27] |
FANG C, ZHANG Y S, ZHENG R H, et al. Spatio-temporal variation of microplastic pollution in the sediment from the Chukchi Sea over five years[J]. Science of the Total Environment, 2022, 806: 150530. doi: 10.1016/j.scitotenv.2021.150530
|
[28] |
FANG C, ZHENG R H, HONG F K, et al. Microplastics in three typical benthic species from the Arctic: Occurrence, characteristics, sources, and environmental implications[J]. Environmental Research, 2021, 192: 110326. doi: 10.1016/j.envres.2020.110326
|
[29] |
WANG L, PENG Y W, XU Y L, et al. An In Situ Depolymerization and Liquid Chromatography-Tandem Mass Spectrometry Method for Quantifying Polylactic Acid Microplastics in Environmental Samples[J]. Environmental science & technology, 2022, 56(18): 13029-13035.
|
[30] |
LIWARSKA-BIZUKOJC E. Effect of (bio)plastics on soil environment: A review[J]. Science of The Total Environment, 2021, 795: 148889. doi: 10.1016/j.scitotenv.2021.148889
|
[31] |
ZHAO Z Y, WANG P Y, WANG Y B, et al. Fate of plastic film residues in agro-ecosystem and its effects on aggregate-associated soil carbon and nitrogen stocks[J]. Journal of Hazardous Materials, 2021, 416: 125954. doi: 10.1016/j.jhazmat.2021.125954
|
[32] |
FAN P, YU H, XI B D, et al. A review on the occurrence and influence of biodegradable microplastics in soil ecosystems: Are biodegradable plastics substitute or threat?[J]. Environment International, 2022, 163: 107244. doi: 10.1016/j.envint.2022.107244
|
[33] |
LAMBERT S, WAGNER M. Formation of microscopic particles during the degradation of different polymers[J]. Chemosphere, 2016, 161: 510-517. doi: 10.1016/j.chemosphere.2016.07.042
|
[34] |
LIAO J, CHEN Q Q. Biodegradable plastics in the air and soil environment: Low degradation rate and high microplastics formation[J]. Journal of Hazardous Materials, 2021, 418: 126329. doi: 10.1016/j.jhazmat.2021.126329
|
[35] |
LIU P, QIAN L, WANG H Y, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes[J]. Environmental Science & Technology, 2019, 53(7): 3579-3588.
|
[36] |
郭 威, 罗雅丹, 李晨光, 等. 海洋中微塑料的老化机理及老化后环境行为研究进展[J]. 生态毒理学报, 2022, 17(4): 33-46.
|
[37] |
赵梦婷, 秦艺源, 邱 野, 等. 微塑料的环境老化机制及效应研究进展[J]. 环境化学, 2022, 41(8): 2465-2477.
|
[38] |
WANG S S, XUE N N, LI W F, et al. Selectively enrichment of antibiotics and ARGs by microplastics in river, estuary and marine waters[J]. Science of the Total Environment, 2020, 708: 134594. doi: 10.1016/j.scitotenv.2019.134594
|
[39] |
白利华, 梁思嘉, 董若辰, 等. 可生物降解微塑料的自然光解老化[J]. 环境化学, 2022, 41(12): 3831-3839.
|
[40] |
SUN Y, WANG X J, XIA S Q, et al. New insights into oxytetracycline (OTC) adsorption behavior on polylactic acid microplastics undergoing microbial adhesion and degradation[J]. Chemical Engineering Journal, 2021, 416: 129085. doi: 10.1016/j.cej.2021.129085
|
[41] |
SINTIM H Y, BARY A I, HAYES D G, et al. Release of micro- and nanoparticles from biodegradable plastic during in situ composting[J]. Science of the Total Environment, 2019, 675: 686-693. doi: 10.1016/j.scitotenv.2019.04.179
|
[42] |
GEWERT B, PLASSMANN M M, MACLEOD M. Pathways for degradation of plastic polymers floating in the marine environment[J]. Environmental Science:Processes & Impacts, 2015, 17(9): 1513-1521.
|
[43] |
BARDI M A G, DE MELLO LEITE MUNHOZ M, DE OLIVEIRA H A, et al. Behavior of UV-cured print inks on LDPE and PBAT/TPS blend substrates during curing, postcuring, and accelerated degradation[J]. Journal of Applied Polymer Science, 2014, 131(22): 41116. doi: 10.1002/app.41116
|
[44] |
WANG H Y, WANG Y Z, LIU D X, et al. Effects of additives on weather-resistance properties of polyurethane films exposed to ultraviolet radiation and ozone atmosphere[J]. Journal of Nanomaterials, 2014 : 487343.
|
[45] |
SATTI S M, SHAH A A, AURAS R, et al. Isolation and characterization of bacteria capable of degrading poly(lactic acid) at ambient temperature[J]. Polymer Degradation and Stability, 2017, 144: 392-400. doi: 10.1016/j.polymdegradstab.2017.08.023
|
[46] |
FOLINO A, KARAGEORGIOU A, CALABRò P S, et al. Biodegradation of Wasted Bioplastics in Natural and Industrial Environments: A Review[J]. Sustainability, 2020, 12(15): 6030. doi: 10.3390/su12156030
|
[47] |
金 琰, 蔡凡凡, 王立功, 等. 生物可降解塑料在不同环境条件下的降解研究进展[J]. 生物工程学报, 2022, 38(5): 1784-1808.
|
[48] |
SATTI S M, SHAH A A. Polyester-based biodegradable plastics: an approach towards sustainable development[J]. Letters in Applied Microbiology, 2020, 70(6): 413-430. doi: 10.1111/lam.13287
|
[49] |
HAJIGHASEMI M, NOCEK B P, TCHIGVINTSEV A, et al. Biochemical and structural insights into enzymatic depolymerization of polylactic acid and other polyesters by microbial carboxylesterases[J]. Biomacromolecules, 2016, 17(6): 2027-2039. doi: 10.1021/acs.biomac.6b00223
|
[50] |
HAIDER T P, VÖLKER C, KRAMM J, et al. Plastics of the future? The impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie International Edition, 2019, 58(1): 50-62. doi: 10.1002/anie.201805766
|
[51] |
ZHOU M, TAKAYANAGI M, YOSHIDA Y, et al. Enzyme-catalyzed degradation of aliphatic polycarbonates prepared from epoxides and carbon dioxide[J]. Polymer Bulletin, 1999, 42(4): 419-424. doi: 10.1007/s002890050484
|
[52] |
NAPPER I E, THOMPSON R C. Environmental deterioration of biodegradable, Oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period[J]. Environmental Science & Technology, 2019, 53(9): 4775-4783.
|
[53] |
ZUO L Z, LI H X, LIN L, et al. Sorption and desorption of phenanthrene on biodegradable poly(butylene adipate co-terephtalate) microplastics[J]. Chemosphere, 2019, 215: 25-32. doi: 10.1016/j.chemosphere.2018.09.173
|
[54] |
张 凯, 孙红文. (可降解)微塑料颗粒吸附有机污染物及对其生物有效性的影响[J]. 环境化学, 2018, 37(3): 375-382.
|
[55] |
PALUSELLI A, FAUVELLE V, GALGANI F, et al. Phthalate release from plastic fragments and degradation in seawater[J]. Environmental Science & Technology, 2019, 53(1): 166-175.
|
[56] |
WEINSTEIN J E, DEKLE J L, LEADS R R, et al. Degradation of bio-based and biodegradable plastics in a salt marsh habitat: Another potential source of microplastics in coastal waters[J]. Marine Pollution Bulletin, 2020, 160: 111518. doi: 10.1016/j.marpolbul.2020.111518
|
[57] |
HUANG C L, LIAO Y Q, ZOU Z J, et al. Novel strategy to interpret the degradation behaviors and mechanisms of bio- and non-degradable plastics[J]. Journal of Cleaner Production, 2022, 355: 131757. doi: 10.1016/j.jclepro.2022.131757
|
[58] |
范秀磊, 甘 容, 谢 雅, 等. 老化前后聚乳酸和聚乙烯微塑料对抗生素的吸附解吸行为[J]. 环境科学研究, 2021, 34(7): 1747-1756.
|
[59] |
CAO H H, YAO S, XU L, et al. Aging of biodegradable-mulch-derived microplastics reduces their sorption capacity of atrazine[J]. Environmental Pollution, 2023, 331: 121877. doi: 10.1016/j.envpol.2023.121877
|
[60] |
TONG H Y, ZHONG X C, DUAN Z H, et al. Micro- and nanoplastics released from biodegradable and conventional plastics during degradation: Formation, aging factors, and toxicity[J]. Science of the Total Environment, 2022, 833: 155275. doi: 10.1016/j.scitotenv.2022.155275
|
[61] |
SHI K, ZHANG H, XU H M, et al. Adsorption behaviors of triclosan by non-biodegradable and biodegradable microplastics: Kinetics and mechanism[J]. Science of the Total Environment, 2022, 842: 156832. doi: 10.1016/j.scitotenv.2022.156832
|
[62] |
CARTENY C C, AMATO E D, PFEIFFER F, et al. Accumulation and release of organic pollutants by conventional and biodegradable microplastics in the marine environment[J]. Environmental Science and Pollution Research, 2023, 30(31): 77819-77829. doi: 10.1007/s11356-023-27887-1
|
[63] |
SONG X W, WU X F, SONG X P, et al. Sorption and desorption of petroleum hydrocarbons on biodegradable and nondegradable microplastics[J]. Chemosphere, 2021, 273: 128553. doi: 10.1016/j.chemosphere.2020.128553
|
[64] |
GUO X Y, WANG X L, ZHOU X Z, et al. Sorption of four hydrophobic organic compounds by three chemically distinct polymers: role of chemical and physical composition[J]. Environmental Science & Technology, 2012, 46(13): 7252-7259.
|
[65] |
CHANG Q, ZHU D H, HU L L, et al. Rapid photo aging of commercial conventional and biodegradable plastic bags[J]. Science of the Total Environment, 2022, 822: 153235. doi: 10.1016/j.scitotenv.2022.153235
|
[66] |
FAN X L, MA Z X, ZOU Y F, et al. Investigation on the adsorption and desorption behaviors of heavy metals by tire wear particles with or without UV ageing processes[J]. Environmental Research, 2021, 195: 110858. doi: 10.1016/j.envres.2021.110858
|
[67] |
CABRERA A, COX L, SPOKAS K, et al. Influence of biochar amendments on the sorption-desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil[J]. Science of the Total Environment, 2014, 470/471: 438-443. doi: 10.1016/j.scitotenv.2013.09.080
|
[68] |
FAN X L, LI W Y, ALAM E, et al. Investigation of the adsorption-desorption behavior of antibiotics by polybutylene succinate and polypropylene aged in different water conditions[J]. Environmental Science and Pollution Research, 2023, 30(13): 36619-36630.
|
[69] |
OUYANG D, PENG Y F, LI B C, et al. Microplastic formation and simultaneous release of phthalic acid esters from residual mulch film in soil through mechanical abrasion[J]. Science of The Total Environment, 2023, 893: 164821.
|
[70] |
ZHONG X C, YI X L, CHENG F Q, et al. Leaching of di-2-ethylhexyl phthalate from biodegradable and conventional microplastics and the potential risks[J]. Chemosphere, 2023, 311: 137208. doi: 10.1016/j.chemosphere.2022.137208
|
[71] |
BRIDSON J H, GAUGLER E C, SMITH D A, et al. Leaching and extraction of additives from plastic pollution to inform environmental risk: A multidisciplinary review of analytical approaches[J]. Journal of Hazardous Materials, 2021, 414: 125571. doi: 10.1016/j.jhazmat.2021.125571
|
[72] |
HAHLADAKIS J N, VELIS C A, WEBER R, et al. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling[J]. Journal of Hazardous Materials, 2018, 344: 179-199. doi: 10.1016/j.jhazmat.2017.10.014
|
[73] |
MENICAGLI V, BALESTRI E, LARDICCI C. Exposure of coastal dune vegetation to plastic bag leachates: A neglected impact of plastic litter[J]. Science of the Total Environment, 2019, 683: 737-748. doi: 10.1016/j.scitotenv.2019.05.245
|
[74] |
张 琳, 陶 静, 蔡咚玲, 等. 环境因素对全生物降解塑料降解行为的影响及机制研究进展[J]. 再生资源与循环经济, 2023, 16(9): 33-37.
|
[75] |
LUAN J L, ZHANG S H, XU Y X, et al. Effects of microplastic exposure on the early developmental period and circadian rhythm of zebrafish (Danio rerio): A comparative study of polylactic acid and polyglycolic acid[J]. Ecotoxicology and Environmental Safety, 2023, 258: 114994. doi: 10.1016/j.ecoenv.2023.114994
|
[76] |
ZHANG X L, XIA M L, SU X J, et al. Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis[J]. Journal of Hazardous Materials, 2021, 413: 125321. doi: 10.1016/j.jhazmat.2021.125321
|
[77] |
DE OLIVEIRA J P J, ESTRELA F N, DE LIMA RODRIGUES A S, et al. Behavioral and biochemical consequences of Danio rerio larvae exposure to polylactic acid bioplastic[J]. Journal of Hazardous Materials, 2021, 404: 124152. doi: 10.1016/j.jhazmat.2020.124152
|
[78] |
KARDGAR A K, GHOSH D, STURVE J, et al. Chronic poly(L-lactide) (PLA)- microplastic ingestion affects social behavior of juvenile European perch (Perca fluviatilis)[J]. Science of the Total Environment, 2023, 881: 163425. doi: 10.1016/j.scitotenv.2023.163425
|
[79] |
DUAN Z H, CHENG H D, DUAN X Y, et al. Diet preference of zebrafish (Danio rerio) for bio-based polylactic acid microplastics and induced intestinal damage and microbiota dysbiosis[J]. Journal of Hazardous Materials, 2022, 429: 128332. doi: 10.1016/j.jhazmat.2022.128332
|
[80] |
XIE M J, XU P, ZHOU W G, et al. Impacts of conventional and biodegradable microplastics on juvenile Lates calcarifer: Bioaccumulation, antioxidant response, microbiome, and proteome alteration[J]. Marine Pollution Bulletin, 2022, 179: 113744. doi: 10.1016/j.marpolbul.2022.113744
|
[81] |
SHARMA S, BHARDWAJ A, THAKUR M, et al. Understanding microplastic pollution of marine ecosystem: a review[J]. Environmental Science and Pollution Research, 2023: 1-44.
|
[82] |
BLETTLER M C M, ABRIAL E, KHAN F R, et al. Freshwater plastic pollution: Recognizing research biases and identifying knowledge gaps[J]. Water Research, 2018, 143: 416-424. doi: 10.1016/j.watres.2018.06.015
|
[83] |
GONZÁLEZ-PLEITER M, TAMAYO-BELDA M, PULIDO-REYES G, et al. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments[J]. Environmental Science:Nano, 2019, 6(5): 1382-1392. doi: 10.1039/C8EN01427B
|
[84] |
GREEN D S. Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities[J]. Environmental Pollution, 2016, 216: 95-103. doi: 10.1016/j.envpol.2016.05.043
|
[85] |
GREEN D S, BOOTS B, SIGWART J, et al. Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling[J]. Environmental Pollution, 2016, 208: 426-434. doi: 10.1016/j.envpol.2015.10.010
|
[86] |
ZIMMERMANN L, GÖTTLICH S, OEHLMANN J, et al. What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna[J]. Environmental Pollution, 2020, 267: 115392. doi: 10.1016/j.envpol.2020.115392
|
[87] |
QIAO G, XU C, SUN Q R, et al. Effects of dietary poly-β-hydroxybutyrate supplementation on the growth, immune response and intestinal microbiota of soiny mullet (Liza haematocheila)[J]. Fish & Shellfish Immunology, 2019, 91: 251-263.
|
[88] |
QIAO G, SUN Q R, ZHANG M M, et al. Antioxidant system of soiny mullet (Liza haematocheila) is responsive to dietary poly-β-hydroxybutyrate (PHB) supplementation based on immune-related enzyme activity and de novo transcriptome analysis[J]. Fish & Shellfish Immunology, 2019, 95: 314-327.
|
[89] |
SEELEY M E, SONG B, PASSIE R, et al. Microplastics affect sedimentary microbial communities and nitrogen cycling[J]. Nature Communications, 2020, 11(1): 2372. doi: 10.1038/s41467-020-16235-3
|
[90] |
ANDERSON G, SHENKAR N. Potential effects of biodegradable single-use items in the sea: Polylactic acid (PLA) and solitary ascidians[J]. Environmental Pollution, 2021, 268: 115364. doi: 10.1016/j.envpol.2020.115364
|
[91] |
SU Y Y, CHENG Z R, HOU Y P, et al. Biodegradable and conventional microplastics posed similar toxicity to marine algae Chlorella vulgaris[J]. Aquatic Toxicology, 2022, 244: 106097. doi: 10.1016/j.aquatox.2022.106097
|
[92] |
MAGNI S, BONASORO F, TORRE C D, et al. Plastics and biodegradable plastics: ecotoxicity comparison between polyvinylchloride and Mater-Bi® micro-debris in a freshwater biological model[J]. Science of the Total Environment, 2020, 720: 137602. doi: 10.1016/j.scitotenv.2020.137602
|
[93] |
TANADCHANGSAENG N, PATTANASUPONG A. Evaluation of biodegradabilities of biosynthetic polyhydroxyalkanoates in Thailand seawater and toxicity assessment of environmental safety levels[J]. Polymers, 2022, 14(3): 428. doi: 10.3390/polym14030428
|
[94] |
BHAGAT J, ZANG L Q, NISHIMURA N, et al. Zebrafish: An emerging model to study microplastic and nanoplastic toxicity[J]. Science of the Total Environment, 2020, 728: 138707. doi: 10.1016/j.scitotenv.2020.138707
|
[95] |
WANG M J, LI Q Q, SHI C Z, et al. Oligomer nanoparticle release from polylactic acid plastics catalysed by gut enzymes triggers acute inflammation[J]. Nature Nanotechnology, 2023, 18(4): 403-411. doi: 10.1038/s41565-023-01329-y
|
[96] |
THACKABERRY E A, FARMAN C, ZHONG F, et al. Evaluation of the toxicity of intravitreally injected PLGA microspheres and rods in monkeys and rabbits: effects of depot size on inflammatory response[J]. Investigative Ophthalmology & Visual Science, 2017, 58(10): 4274-4285.
|
[97] |
SHI W, FUAD A R M, LI Y H, et al. Biodegradable polymeric nanoparticles increase risk of cardiovascular diseases by inducing endothelium dysfunction and inflammation[J]. Journal of Nanobiotechnology, 2023, 21(1): 65. doi: 10.1186/s12951-023-01808-3
|
[98] |
FODOR-KARDOS A, KISS Á F, MONOSTORY K, et al. Sustained in vitro interferon-beta release and in vivo toxicity of PLGA and PEG-PLGA nanoparticles[J]. RSC Advances, 2020, 10(27): 15893-15900. doi: 10.1039/C9RA09928J
|
[99] |
IBRAHIM Y S, ANUAR S T, AZMI A A, et al. Detection of microplastics in human colectomy specimens[J]. JGH Open, 2021, 5(1): 116-121. doi: 10.1002/jgh3.12457
|
[100] |
RAGUSA A, SVELATO A, SANTACROCE C, et al. Plasticenta: first evidence of microplastics in human placenta[J]. Environment International, 2021, 146: 106274. doi: 10.1016/j.envint.2020.106274
|
[101] |
SCHWABL P, KÖPPEL S, KÖNIGSHOFER P, et al. Detection of various microplastics in human stool a prospective case series[J]. Annals of Internal Medicine, 2019, 171(7): 453-457. doi: 10.7326/M19-0618
|
[1] | CHEN Zhan, ZHOU Can, WANG Yumeng, HU Lingling. Degradation characteristics of poly(butylene adipate-co-terephthalate)-based biodegradable plastics in offshore environment[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(4): 581-590. DOI: 10.12111/j.mes.2024-x-0018 |
[2] | XIA Bin, WANG Ying, LI Hengxiang, HUANG Wei, FENG Zhihua, DU Yunchao, LI Li’ang, WANG Juying, ZHANG Kai, XU Xiangrong, WANG Youji. Research progress on the environmental behavior and toxic effects of marine nanoplastics[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(2): 167-185, 213. DOI: 10.12111/j.mes.2024-x-0011 |
[3] | KANG Zi-xin, LIN Jian-hui, YANG Tao, HUI Guang-neng, LIAO Wu-sen, ZENG Ying-xu. Accumulation characteristics and toxic effects of different functionalized nanoplastics in Paphia undulata[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(3): 362-368. DOI: 10.12111/j.mes.2022-x-0118 |
[4] | YAN Bing, CEN Jing-yi, LV Song-hui. Study on the acute toxicity effects of harmful dinoflagellate Karenia mikimotoi to Oryzias melastigm[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(3): 402-407, 415. DOI: 10.12111/j.mes.20210034 |
[5] | ZHANG Cai, CHEN Xiao-hua, TAN Li-ju, WANG Jiang-tao. Research on toxic effects of nano-TiO2 on Skeletonema costatum and Dunaliella salina[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2018, 37(2): 215-220, 227. DOI: 10.12111/j.cnki.mes20180209 |
[6] | ZHANG Xin-xin, YIN Yue, DUAN Mei-na, WANG Chao, XIONG De-qi. Effect of bioremediation dispersant and 180# fuel oil on CAT and SOD in Glyptocidaris crenularis[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2017, 36(2): 284-290. DOI: 10.13634/j.cnki.mes20170220 |
[7] | LI Lei, JIANG Mei, SHEN Xin-qiang, WANG Yun-long, WU Qing-yuan, NIU Jun-xiang, XU Gao-peng. Effects of Cr(VI) on the activities of SOD,concentration of MDA and MTs inhepatopancreas and gilltsissue of Portunus trituberculatus[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(6): 838-843. DOI: 10.13634/j.cnki.mes.2015.06.007 |
[8] | LI Shi-yi, SUN Ji-peng, HONG Zhuan, CHEN Fa-he. Acute toxic effects of zinc,cadmium,copper,chromium, selenium on Crassostrea plicatula[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(6): 813-818. DOI: 10.13634/j.cnki.mes.2015.06.003 |
[9] | LI Lei, JIANG Mei, SHEN Xin-qiang, WANG Yun-long, WU Qing-yuan, NIU Jun-xiang, XU Gao-peng. Effects of benzo[a]pyrene exposure on biomarkers in Exopalaemon carinicauda liver[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(4): 513-518. DOI: 10.13634/j.cnki.mes.2015.04.007 |
[10] | QI Lei-lei, SHA Jing-jing, TANG Xue-xi. Acute toxic effects of crude oil pollution on Nauplius Ⅱ of Chthamalus challengeri[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(3): 367-372. DOI: 10.13634/j.cnki.mes.2015.03.008 |