Citation: | YANG Chao, ZHEN Yu, QIN Mingli, ZHU Jiwei. Establishment and application of rapid visual in-situ detection method for Skeletonema costatum[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(5): 787-796. DOI: 10.12111/j.mes.2023-x-0278 |
Skeletonema costatum is a widely distributed species in global waters, which also causes red tide frequently. It is of great significance to detect and monitor S. costatum for marine ecological environment research. In this study, a rapid visual in-situ detection method for S. costatum was developed based on rapid nucleic acid extraction and loop-mediated isothermal amplification. This method offers the advantages of high specificity, high sensitivity (1.2 pg genomic DNA) and rapid detection time (<100 min), and the presence or absence of cells can be determined through color changes in the reaction system. The method has been verified by a large number of field samples and holds great feasibility, which is expected to be widely used in field monitoring of S. costatum.
[1] |
ANDERSON D M. Approaches to monitoring, control and management of harmful algal blooms (HABs)[J]. Ocean & Coastal Management, 2009, 52(7): 342-347.
|
[2] |
WANG B K, ZHANG C Y, LIU F Q G, et al. Development of a recombinase polymerase amplification combined with lateral flow dipstick assay for rapid and sensitive detection of Heterosigma akashiwo[J]. Journal of Applied Phycology, 2021, 33(5): 3165-3178. doi: 10.1007/s10811-021-02538-5
|
[3] |
霍文毅, 俞志明, 邹景忠, 等. 胶州湾中肋骨条藻赤潮与环境因子的关系[J]. 海洋与湖沼, 2001, 32(3): 311-318.
|
[4] |
李成峰, 甄 毓, 刘材材, 等. 中肋骨条藻抗体的制备及酶联免疫检测方法的建立[J]. 海洋湖沼通报, 2015 (3): 131-138.
|
[5] |
周名江, 于仁成. 有害赤潮的形成机制、危害效应与防治对策[J]. 自然杂志, 2007 (2): 72-77.
|
[6] |
陈楠生, 黄海龙. 中国海洋浮游植物和赤潮物种的生物多样性研究进展(一): 渤海[J]. 海洋与湖沼, 2021, 52(2): 346-362.
|
[7] |
ZHU J R, WANG J H, SHEN H T, et al. Observation and analysis of the diluted water and red tide in the sea off the Changjiang River mouth in middle and late June 2003[J]. Chinese Science Bulletin, 2005, 50(3): 240-247. doi: 10.1007/BF02897534
|
[8] |
LIU F G, ZHANG C Y, WANG Y Y, et al. A review of the current and emerging detection methods of marine harmful microalgae[J]. Science of the Total Environment, 2022, 815: 152913. doi: 10.1016/j.scitotenv.2022.152913
|
[9] |
于志刚, 米铁柱, 姚 鹏, 等. 赤潮藻鉴定与定量检测方法进展[J]. 中国海洋大学学报(自然科学版), 2009, 39(5): 1067-1076.
|
[10] |
MILLER P E, SCHOLIN C A. Identification of cultured Pseudo-nitzschia (Bacillariophyceae) using species-specific LSU rRNA-targeted fluorescent probes[J]. Journal of Phycology, 1996, 32(4): 646-655. doi: 10.1111/j.0022-3646.1996.00646.x
|
[11] |
SCHOLIN C A, BUCK K R, BRITSCHGI T, et al. Identification of Pseudo-nitzschia australis (Bacillariophyceae) using rRNA-targeted probes in whole cell and sandwich hybridization formats[J]. Phycologia, 1996, 35(3): 190-197. doi: 10.2216/i0031-8884-35-3-190.1
|
[12] |
GALLUZZI L, PENNA A, BERTOZZINI E, et al. Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a dinoflagellate)[J]. Applied and Environmental Microbiology, 2004, 70(2): 1199-1206. doi: 10.1128/AEM.70.2.1199-1206.2004
|
[13] |
ECKFORD-SOPER L K, DAUGBJERG N. Development of a multiplex real-time qPCR assay for simultaneous enumeration of up to four marine toxic bloom-forming microalgal species[J]. Harmful Algae, 2015, 48: 37-43. doi: 10.1016/j.hal.2015.06.009
|
[14] |
SUN Y J, CHEN G F, ZHANG C Y, et al. Development of a multiplex polymerase chain reaction assay for the parallel detection of harmful algal bloom-forming species distributed along the Chinese coast[J]. Harmful Algae, 2019, 84: 36-45. doi: 10.1016/j.hal.2019.02.008
|
[15] |
NOTOMI T, OKAYAMA H, MASUBUCHI H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research, 2000, 28(12): e63. doi: 10.1093/nar/28.12.e63
|
[16] |
BARREDA-GARCIA S, MIRANDA-CASTRO R, DE-LOS-SANTOS-ÁLVAREZ N, et al. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection[J]. Analytical and Bioanalytical Chemistry, 2018, 410(3): 679-693. doi: 10.1007/s00216-017-0620-3
|
[17] |
QU X J, JIN H J, LIU Y Q, et al. Strand displacement amplification reaction on quantum dot-encoded silica bead for visual detection of multiplex MicroRNAs[J]. Analytical Chemistry, 2018, 90(5): 3482-3489. doi: 10.1021/acs.analchem.7b05235
|
[18] |
ZHANG F Y, MA L B, XU Z L, et al. Sensitive and rapid detection of Karenia mikimotoi (Dinophyceae) by loop-mediated isothermal amplification[J]. Harmful Algae, 2009, 8(6): 839-842. doi: 10.1016/j.hal.2009.03.004
|
[19] |
HUANG H L, ZHU P, ZHOU C X, et al. The development of loop-mediated isothermal amplification combined with lateral flow dipstick for detection of Karlodinium veneficum[J]. Harmful Algae, 2017, 62: 20-29. doi: 10.1016/j.hal.2016.11.022
|
[20] |
WANG L, CHEN G F, ZHANG C Y, et al. Rapid and sensitive detection of Amphidinium carterae by loop-mediated isothermal amplification combined with a chromatographic lateral-flow dipstick[J]. Molecular and Cellular Probes, 2019, 43: 72-79. doi: 10.1016/j.mcp.2018.11.001
|
[21] |
QIN Y, CHEN G F, ZHANG C Y, et al. Development of loop-mediated isothermal amplification combined with a chromatographic lateral-flow dipstick for rapid detection of Chattonella marina[J]. Harmful Algae, 2019, 89: 101666. doi: 10.1016/j.hal.2019.101666
|
[22] |
HUANG H L, ZHU P, ZHOU C X, et al. Detection of Skeletonema costatum based on loop-mediated isothermal amplification combined with lateral flow dipstick[J]. Molecular and Cellular Probes, 2017, 36: 36-42. doi: 10.1016/j.mcp.2017.08.003
|
[23] |
YUAN J, MI T Z, ZHEN Y, et al. Development of a rapid detection and quantification method of Karenia mikimotoi by real-time quantitative PCR[J]. Harmful Algae, 2012, 17: 83-91. doi: 10.1016/j.hal.2012.03.004
|
[24] |
甄 毓, 于志刚, 米铁柱. 分子生物学在微藻分类研究中的应用[J]. 中国海洋大学学报(自然科学版), 2006, 36(6): 875-878.
|
[25] |
陈国福, 张春云, 王广策, 等. 用于赤潮藻分子系统学研究的遗传及分子标记[J]. 海洋科学进展, 2008, 26(4): 522-531. doi: 10.3969/j.issn.1671-6647.2008.04.014
|
[26] |
何闪英, 于志刚. 红色裸甲藻实时定量PCR快速检测方法的建立(英文)[J]. 浙江大学学报(农业与生命科学版), 2009, 35(2): 119-126.
|
[27] |
CHEN G F, MA C S, ZHANG C Y, et al. A rapid and sensitive method for field detection of Prorocentrum donghaiense using reverse transcription-coupled loop-mediated isothermal amplification[J]. Harmful Algae, 2013, 29: 31-39. doi: 10.1016/j.hal.2013.08.001
|
[28] |
WONG Y P, OTHMAN S, LAU Y L, et al. Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms[J]. Journal of Applied Microbiology, 2018, 124(3): 626-643. doi: 10.1111/jam.13647
|
[29] |
LIANG S Y, CHAN Y H, HSIA K T, et al. Development of loop-mediated isothermal amplification assay for detection of Entamoeba histolytica[J]. Journal of Clinical Microbiology, 2009, 47(6): 1892-1895. doi: 10.1128/JCM.00105-09
|
[30] |
GOTO M, HONDA E, OGURA A, et al. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue[J]. Biotechniques, 2009, 46(3): 167-172. doi: 10.2144/000113072
|
[31] |
Xu Y, Wang Y, Hu J, et al. Development and Visualization Improvement for the Rapid Detection of Decapod Iridescent Virus 1 (DIV1) in Penaeus vannamei Based on an Isothermal Recombinase Polymerase Amplification Assay[J]. Viruses, 2022, 14(12): 2752. doi: 10.3390/v14122752
|
[32] |
POOLE C B, LI Z R, ALHASSAN A, et al. Colorimetric tests for diagnosis of filarial infection and vector surveillance using non-instrumented nucleic acid loop-mediated isothermal amplification (NINA-LAMP)[J]. PLoS One, 2017, 12(2): e0169011. doi: 10.1371/journal.pone.0169011
|
[33] |
贾晓曼, 翟 浩, 张 勇, 等. LAMP技术的染料、辅助剂的研究进展[J]. 江西农业学报, 2018, 30(12): 60-65.
|
[1] | YIN Xiaomin, DENG Xue, WEI Yawen, LIU Qian. Study on the distribution and regulation mechanism of pCO2 in the Bohai Sea in summer[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2025, 44(2): 201-211. DOI: 10.12111/j.mes.2024-x-0050 |
[2] | HE Qi, CAO Xiang, XU Huifang, ZHANG Minghua, DU Yanling, SONG Wei. M-PSPNet multi-scale ocean temperature front detection method[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(4): 630-639. DOI: 10.12111/j.mes.2022-x-0289 |
[3] | ZHANG Xue-wei, HAN Zhen. Prediction and analysis of Argo temperature data by ConvGRU model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(4): 628-635. DOI: 10.12111/j.mes.20210054 |
[4] | LIU Hong-yan, LI Kai-qiang, KANG Bo-lun, QIN Hai-hua. Fe(Ⅲ) reduction and hydrogen production by Fe (Ⅲ)-reducing bacterium Enterococcus sp. ZQ21[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(3): 379-383. DOI: 10.12111/j.mes.20200119 |
[5] | SHI Xin-guo, LI Yue, XIAO Yu-chun, ZHENG Wen-huang, LIU Le-mian, CHEN Jian-feng. Isolation and identification of a high efficiency algicidal bacterium FDHY-C3 and algicidal characteristics on Skeletonema costatum[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(1): 114-121. DOI: 10.12111/j.mes.20190276 |
[6] | WANG Shan, LIU Miao, LIU Hong-yan. Characterization of dissimilatory iron reduction and Cr(VI) reduction by Enterobacter sp. L6[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2020, 39(6): 838-843. DOI: 10.12111/j.mes.20190155 |
[7] | YU Xiao-cai, SHANG Xiao-lin, JI Qiu-yi, ZHANG Jian, QI Xin-yang, JIN Xiao-jie. Photocatalytic efficiency of nano-Ce/SnO2 in the treatment of aquaculture wastewater[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(4): 501-506. DOI: 10.13634/j.cnki.mes20160404 |
[8] | LI Lei, JIANG Mei, SHEN Xin-qiang, WANG Yun-long, WU Qing-yuan, NIU Jun-xiang, XU Gao-peng. Effects of Cr(VI) on the activities of SOD,concentration of MDA and MTs inhepatopancreas and gilltsissue of Portunus trituberculatus[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(6): 838-843. DOI: 10.13634/j.cnki.mes.2015.06.007 |
[9] | ZHANG Qi, LIU Yong-jian, LIU Gui-ze. The preliminary study of single-cell PCR analysis of marine Dinoflagellates[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(4): 611-615. DOI: 10.13634/j.cnki.mes.2015.04.025 |
[10] | DONG Yu-jia, MENG Xiang-feng. Review of the research on the classification of two types of ENSO events[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(3): 473-480. DOI: 10.13634/j.cnki.mes.2015.03.026 |