Citation: | WANG Xiaoyang, SHEN Anglu. Study on the growth and cellular polyphosphates of Chaetoceros curvisetus under different phosphate conditions[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(3): 359-367. DOI: 10.12111/j.mes.2023-x-0239 |
Chaetoceros curvisetus is an important bloom-forming species in China. In this study, the growth characteristics of C. curvisetus at different growth phases and the changes of polyphosphate (PolyP) in algal cells at different phosphate concentrations were analyzed. It was found that under the condition of high phosphorus culture, the maximum cell density of C. curvisetus was 4.99×109 cell/L, and the nuclear PolyP and short-chain PolyP in the initial phase were significantly higher than those in the growth phase, and the nuclear long-chain PolyP in the initial phase was significantly higher than those in the growth phase and maintenance phase (P<0.05). Under the condition of low phosphorus culture, the maximum cell density of C. curvisetus was 9.35×107 cell/L, the long-chain PolyP in the cytoplasm of C. curvisetus in the growth phase was significantly higher than that in the maintenance phase. Whether under high or low phosphorus cultivation conditions, the total PolyP in the cells of C. curvisetus was negatively correlated with the cell density (P<0.05). In addition, the cell density of C. curvisetus was negatively correlated with the long-chain and short-chain PolyP in the nucleus under high phosphorus culture conditions, while it was negatively correlated with the long-chain PolyP in the cytoplasm and nucleus under low phosphorus culture conditions. The results of this study can provide a new theoretical basis for clarifying the storage and utilization mechanism of phosphate during the bloom of C. curvisetus.
[1] |
IMAI I, YAMAGUCHI M. Life cycle, physiology, ecology and red tide occurrences of the fish-killing raphidophyte Chattonella[J]. Harmful Algae, 2012, 14: 46-70. doi: 10.1016/j.hal.2011.10.014
|
[2] |
王 芹, 刘 超, 张少君, 等. 旋链角毛藻活性物质的提取及抑菌作用研究[J]. 食品科学, 2010, 31(5): 180-183.
|
[3] |
张议文, 王江涛, 谭丽菊. 旋链角毛藻对中肋骨条藻化感作用的影响因素及化感物质性质初探[J]. 海洋学报, 2014, 36(2): 123-129.
|
[4] |
LORENZO-ORTS L, COUTO D, HOTHORN M. Identity and functions of inorganic and inositol polyphosphates in plants[J]. New Phytologist, 2020, 225(2): 637-652. doi: 10.1111/nph.16129
|
[5] |
金文育, 姚炜民, 欧林坚, 等. 米氏凯伦藻胞内多聚磷酸盐对环境磷变化的响应研究[J]. 海洋与湖沼, 2022, 53(2): 340-345.
|
[6] |
魏 峥, 聂琰晖, 刘乐庭, 等. 多聚磷酸盐在原核和真核生物中的研究进展[J]. 生理科学进展, 2009, 40(3): 197-202.
|
[7] |
杨晓阳, 万梦婕, 王智明, 等. 长链多聚磷酸盐的合成、降解、检测及临床意义[J]. 海南医学, 2018, 29(17): 2471-2473.
|
[8] |
石廷玉, 王园媛, 董兴高. 多聚磷酸盐: 不仅是异染粒[J]. 中国生物化学与分子生物学报, 2018, 34(2): 153-161.
|
[9] |
石廷玉, 王怀林, 谢建平. 多聚磷酸盐及其代谢酶的研究进展[J]. 生理科学进展, 2011, 42(3): 181-187.
|
[10] |
DIAZ J, INGALL E, BENITEZ-NELSON C, et al. Marine polyphosphate: A key player in geologic phosphorus sequestration[J]. Science, 2008, 320(5876): 652-655. doi: 10.1126/science.1151751
|
[11] |
马 芮, 苏 莉, 宋宇昊, 等. 多聚磷酸盐: 菌体内多功能调控子和环境压力守护者[J]. 微生物学通报, 2017, 44(7): 1736-1746.
|
[12] |
VAGABOV V M, TRILISENKO L V, KULAKOVSKAYA T V, et al. Effect of a carbon source on polyphosphate accumulation in Saccharomyces cerevisiae[J]. FEMS Yeast Research, 2008, 8(6): 877-882. doi: 10.1111/j.1567-1364.2008.00420.x
|
[13] |
BREUS N A, RYAZANOVA L P, DMITRIEV V V, et al. Accumulation of phosphate and polyphosphate by Cryptococcus humicola and Saccharomyces cerevisiae in the absence of nitrogen[J]. FEMS Yeast Research, 2012, 12(6): 617-624. doi: 10.1111/j.1567-1364.2012.00812.x
|
[14] |
PESTOV N A, KULAKOVSKAYA T V, KULAEV I S. Inorganic polyphosphate in mitochondria of Saccharomyces cerevisiae at phosphate limitation and phosphate excess[J]. FEMS Yeast Research, 2004, 4(6): 643-648. doi: 10.1016/j.femsyr.2003.12.008
|
[15] |
SIDERIUS M, MUSGRAVE A, VAN DEN ENDE H, et al. Chlamydomonas eugametos (chlorophyta) stores phosphate in polyphosphate bodies together with calcium[J]. Journal of Phycology, 1996, 32(3): 402-409. doi: 10.1111/j.0022-3646.1996.00402.x
|
[16] |
RUIZ F A, MARCHESINI N, SEUFFERHELD M, et al. The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes[J]. Journal of Biological Chemistry, 2001, 276(49): 46196-46203. doi: 10.1074/jbc.M105268200
|
[17] |
AKSOY M, POOTAKHAM W, GROSSMAN A R. Critical function of a Chlamydomonas reinhardtii putative polyphosphate polymerase subunit during nutrient deprivation[J]. The Plant Cell, 2014, 26(10): 4214-4229. doi: 10.1105/tpc.114.129270
|
[18] |
VOŘÍŠEK J, ZACHLEDER V. Redistribution of phosphate deposits in the alga Scenedesmus quadricauda deprived of exogenous phosphate—an ultra-cytochemical study[J]. Protoplasma, 1984, 119(3): 168-177. doi: 10.1007/BF01288871
|
[19] |
NISHIKAWA K, MACHIDA H, YAMAKOSHI Y, et al. Polyphosphate metabolism in an acidophilic alga Chlamydomonas acidophila KT-1 (Chlorophyta) under phosphate stress[J]. Plant Science, 2006, 170(2): 307-313. doi: 10.1016/j.plantsci.2005.08.025
|
[20] |
YAGISAWA F, KUROIWA H, FUJIWARA T, et al. Intracellular structure of the unicellular red alga Cyanidioschyzon merolae in response to phosphate depletion and resupplementation[J]. Cytologia, 2016, 81(3): 341-347. doi: 10.1508/cytologia.81.341
|
[21] |
MARTIN P, VAN MOOY B A, HEITHOFF A, et al. Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana[J]. The ISME Journal, 2011, 5(6): 1057-1060. doi: 10.1038/ismej.2010.192
|
[22] |
CLARK J E, BEEGEN H, WOOD H G. Isolation of intact chains of polyphosphate from “Propionibacterium shermanii” grown on glucose or lactate[J]. Journal of Bacteriology, 1986, 168(3): 1212-1219.
|
[23] |
MARTIN P, VAN MOOY B A S. Fluorometric quantification of polyphosphate in environmental plankton samples: extraction protocols, matrix effects, and nucleic acid interference[J]. Applied and Environmental Microbiology, 2013, 79(1): 273-281. doi: 10.1128/AEM.02592-12
|
[24] |
茅 华, 许 海, 刘兆普. 温度、光照、盐度及pH对旋链角毛藻生长的影响[J]. 生态科学, 2007, 26(5): 432-436.
|
[25] |
沈盎绿, 李道季. 不同营养盐水平对东海原甲藻和米氏凯伦藻生长的影响[J]. 海洋渔业, 2016, 38(4): 415-423.
|
[26] |
OU L J, WANG D, HUANG B Q, et al. Comparative study of phosphorus strategies of three typical harmful algae in Chinese coastal waters[J]. Journal of Plankton Research, 2008, 30(9): 1007-1017. doi: 10.1093/plankt/fbn058
|
[27] |
VORONKOV A, SINETOVA M. Polyphosphate accumulation dynamics in a population of Synechocystis sp. PCC 6803 cells under phosphate overplus[J]. Protoplasma, 2019, 256(4): 1153-1164. doi: 10.1007/s00709-019-01374-2
|
[28] |
POWELL N, SHILTON A, CHISTI Y, et al. Towards a luxury uptake process via microalgae-defining the polyphosphate dynamics[J]. Water Research, 2009, 43(17): 4207-4213. doi: 10.1016/j.watres.2009.06.011
|
[29] |
RUIZ F A, RODRIGUES C O, DOCAMPO R. Rapid changes in polyphosphate content within acidocalcisomes in response to cell growth, differentiation, and environmental stress in Trypanosoma cruzi[J]. Journal of Biological Chemistry, 2001, 276(28): 26114-26121. doi: 10.1074/jbc.M102402200
|
[30] |
KULAEV I, VAGABOV V, KULAKOVSKAYA T. New aspects of inorganic polyphosphate metabolism and function[J]. Journal of Bioscience and Bioengineering, 1999, 88(2): 111-129. doi: 10.1016/S1389-1723(99)80189-3
|
[31] |
SOLOVCHENKO A, KHOZIN-GOLDBERG I, SELYAKH I, et al. Phosphorus starvation and luxury uptake in green microalgae revisited[J]. Algal Research, 2019, 43: 101651. doi: 10.1016/j.algal.2019.101651
|
[32] |
FALKNER G, WAGNER F, FALKNER R. The bioenergetic coordination of a complex biological system is revealed by its adaptation to changing environmental conditions[J]. Acta Biotheoretica, 1996, 44(3/4): 283-299.
|
[1] | SU Xiu, LI Yue-ming, JING Xin-di, SONG De-rui, LIU Gui-ze, XU Jing-ping, WANG Xiang. Quantitative remote sensing inversion of Suaeda salsa growth density based on GF-6[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(1): 151-159. DOI: 10.12111/j.mes.2021-x-0130 |
[2] | TIAN Li-na, YANG Jin-sheng, ZHOU You-lin, CAO Rui, ZHANG Meng, PAN Yu-ying. The primary study on antioxidase activities of Boleophthalmus pectinirostris exposed to crude oil in intertidal zone[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(1): 135-141. DOI: 10.12111/j.mes.20200170 |
[3] | YANG Xiao-long, GUO Mei-yu, YE Jin-qing, YUAN Xiu-tang, ZHANG An-guo, LI Shu-ying, XU Yong-ping, YANG Chao-jie. The bioaccumulation of Zostera japonica for five heavy metals (Zn, Cr, Cu, Pb, Cd) at different growth stages in the Yellow Sea and Bohai Sea[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(6): 895-902. DOI: 10.12111/j.mes.2021-x-0059 |
[4] | SUN Ling-ling, SONG Jin-ming, LIU Yao, YU Ying, SUN Xuan. Simultaneous determination of molybdenum and other heavy metals in Mytilus edulis by inductively coupled plasma mass spectrometry with quadrupole collision cell technology[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2020, 39(3): 453-459. DOI: 10.12111/j.mes20200320 |
[5] | WEI Hai-feng, TIAN Shan-chuan, ZHAO Xiao-yi, LIU Chang-fa, ZHOU Ji-ti. Study on the bioaccumulation kinetics of three PAHs by Apostichopus japonicus[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2019, 38(5): 663-668. DOI: 10.12111/j.mes20190503 |
[6] | WANG Hong-yu, FENG Rui-qi, LIU Hong-yan. Characterization of cell growth and bioflocculant production by Enterococcus sp.Y025 using macro-algae Laminaria japonica[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2018, 37(3): 338-342. DOI: 10.12111/j.cnki.mes20180304 |
[7] | BAI Li-wen, LI Zhuang-zhuang, LI Xia, QIN Yan-jie, WU Di, ZHOU Shi-jia. Cytotoxicity studies on cupric sulfate to roughskin sculpin kidney fin cell lines in vitro[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2017, 36(2): 161-166. DOI: 10.13634/j.cnki.mes20170201 |
[8] | QIAO Ling, ZHEN Yu, MI Tie-Zhu. Review of the brown tides caused by Aureococcus anophagefferens[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(3): 473-480. DOI: 10.13634/j.cnki.mes20160324 |
[9] | ZHANG Qi, LIU Yong-jian, LIU Gui-ze. The preliminary study of single-cell PCR analysis of marine Dinoflagellates[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(4): 611-615. DOI: 10.13634/j.cnki.mes.2015.04.025 |
[10] | WANG Yue, SHEN Ang-lu, ZHAO Shi-ye, ZHU Li-xin, SONG Shu-zhen, LI Dao-ji. Effects of pH limitation on population growth,nutrient uptake and photosynthesis physiological processes of Karenia mikimotoi[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(4): 488-493. DOI: 10.13634/j.cnki.mes.2015.04.002 |