Citation: | LIU Ke, ZHANG Hailong, PENG Peng, XIAO Xiaotong. Sedimentary records and environmental responses of organic carbon sources and carbon stock in the Jiaozhou Bay[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(5): 776-786. DOI: 10.12111/j.mes.2023-x-0237 |
In order to explore the sources and burial of OC in the sediments of Jiaozhou Bay and to evaluate the carbon stock, three cores sediments were collected from different areas of Jiaozhou Bay. The radionuclide, mineralogical parameters and total organic carbon parameters were determined. Based on the binary end member model, the average contribution of terrestrial OC from cores JZB28, JZB20 and JZB14 is 39% ± 14%, 37% ± 6% and 17% ± 5%,the highest terrestrial contribution in the core JZB28 was located near the eastern estuary of the bay. Before the 1980s, the higher contribution of terrestrial OC in Jiaozhou Bay was mainly influenced by sufficient precipitation and sediment transport; by the year 2000, the OC contribution from marine sources increased due to a combination of decreasing of precipitation and sediment transport, as well as increasing of high-nutrient wastewater input; after 2000, the OC composition was stable. The average carbon stock of the cores JZB28, JZB20 and JZB14 is (0.78 ± 0.09) t/ha, (0.50 ± 0.07) t/ha and (0.45 ± 0.06) t/ha, respectively. Compared to bays and coastal seas, the relatively high carbon stock reveals that the Jiaozhou Bay is an important sedimentary carbon reservoir. The results based on this study could provide scientific basis for the sustainable development of the ecological service function of carbon storage in the Jiaozhou Bay.
[1] |
张 瑶, 赵美训, 崔 球, 等. 近海生态系统碳汇过程、调控机制及增汇模式[J]. 中国科学:地球科学, 2017, 47(4): 438-449.
|
[2] |
LIU C, LIU G Y, CASAZZA M, et al. Current status and potential assessment of China’s ocean carbon sinks[J]. Environmental Science & Technology, 2022, 56(10): 6584-6595.
|
[3] |
SABINE C L, TANHUA T. Estimation of anthropogenic CO2 inventories in the ocean[J]. Annual Review of Marine Science, 2010, 2(1): 175-198. doi: 10.1146/annurev-marine-120308-080947
|
[4] |
SABINE C L, FEELY R A, GRUBER N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5682): 367-371. doi: 10.1126/science.1097403
|
[5] |
LE QUÉRÉ C, PETERS G P, ANDRES R J, et al. Global carbon budget 2013[J]. Earth System Science Data, 2014, 6(1): 235-263. doi: 10.5194/essd-6-235-2014
|
[6] |
CUELLAR-MARTINEZ T, RUIZ-FERNÁNDEZ A C, SANCHEZ-CABEZA J A, et al. Temporal records of organic carbon stocks and burial rates in Mexican blue carbon coastal ecosystems throughout the Anthropocene[J]. Global and Planetary Change, 2020, 192: 103215. doi: 10.1016/j.gloplacha.2020.103215
|
[7] |
王法明, 唐剑武, 叶思源, 等. 中国滨海湿地的蓝色碳汇功能及碳中和对策[J]. 中国科学院院刊, 2021, 36(3): 241-251.
|
[8] |
宋金明, 袁华茂, 李学刚, 等. 胶州湾的生态环境演变与营养盐变化的关系[J]. 海洋科学, 2020, 44(8): 106-117.
|
[9] |
YUAN H W, CHEN J F, YE Y, et al. Sources and distribution of sedimentary organic matter along the Andong salt marsh, Hangzhou Bay[J]. Journal of Marine Systems, 2017, 174: 78-88. doi: 10.1016/j.jmarsys.2017.06.001
|
[10] |
LU X, ZHOU F X, CHEN F J, et al. Spatial and seasonal variations of sedimentary organic matter in a subtropical bay: implication for human interventions[J]. International Journal of Environmental Research and Public Health, 2020, 17(4): 1362. doi: 10.3390/ijerph17041362
|
[11] |
夏 鹏, 孟宪伟, 丰爱平, 等. 广西钦州湾百年来红树林演变的有机碳同位素和孢粉示踪及其影响因素[J]. 海洋学报, 2015, 37(3): 77-85.
|
[12] |
白亚之, 乔淑卿, 吴 斌, 等. 泰国湾百年来有机碳埋藏记录及环境响应[J]. 沉积学报, 2022, 40(2): 484-493.
|
[13] |
王 博. 基于同位素和地球化学指标反演大亚湾沉积物物源组成和生产力变化[D]. 厦门: 厦门大学, 2018.
|
[14] |
WANG Y J, LIU D Y, RICHARD P, et al. A geochemical record of environmental changes in sediments from Sishili Bay, northern Yellow Sea, China: anthropogenic influence on organic matter sources and composition over the last 100 years[J]. Marine Pollution Bulletin, 2013, 77(1/2): 227-236.
|
[15] |
AVELAR S, VAN DER VOORT T S, EGLINTON T I. Relevance of carbon stocks of marine sediments for national greenhouse gas inventories of maritime nations[J]. Carbon Balance and Management, 2017, 12(1): 1-10. doi: 10.1186/s13021-017-0077-x
|
[16] |
ZHANG Y S, XIAO X T, LIU D Y, et al. Spatial and seasonal variations of organic carbon distributions in typical intertidal sediments of China[J]. Organic Geochemistry, 2020, 142: 103993. doi: 10.1016/j.orggeochem.2020.103993
|
[17] |
CHU M F, SACHS J P, PENG P, et al. Temporal variations of mangrove-derived organic carbon storage in two tropical estuaries in Hainan, China since 1960CE[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 627: 111726. doi: 10.1016/j.palaeo.2023.111726
|
[18] |
陈金瑞, 陈学恩. 近70年胶州湾水动力变化的数值模拟研究[J]. 海洋学报, 2012, 34(6): 30-41.
|
[19] |
YAO P, ZHAO B, BIANCHI T S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: implications for carbon preservation and authigenic mineral formation[J]. Continental Shelf Research, 2014, 91: 1-11. doi: 10.1016/j.csr.2014.08.010
|
[20] |
YU M, EGLINTON T I, HAGHIPOUR N, et al. Molecular isotopic insights into hydrodynamic controls on fluvial suspended particulate organic matter transport[J]. Geochimica et Cosmochimica Acta, 2019, 262: 78-91. doi: 10.1016/j.gca.2019.07.040
|
[21] |
毕世普, 孔祥淮, 张 勇, 等. 胶州湾浅表地层沉积物粒度特征及其环境意义[J]. 海洋地质前沿, 2015, 31(10): 1-7.
|
[22] |
盛茂刚, 崔峻岭, 时 青, 等. 青岛市环胶州湾各河流输砂特征分析[J]. 水文, 2014, 34(3): 92-96.
|
[23] |
史经昊. 胶州湾演变对人类活动的响应[D]. 青岛: 中国海洋大学, 2010.
|
[24] |
朱 强. 长江口及其邻近海域表层沉积物粒度的空间格局和近期变化[D]. 上海: 华东师范大学, 2016.
|
[25] |
HEDGES J I, KEIL R G, BENNER R. What happens to terrestrial organic matter in the ocean?[J]. Organic Geochemistry, 1997, 27(5/6): 195-212.
|
[26] |
张明亮, 姜美洁, 付 翔, 等. 莱州湾沉积物有机质来源[J]. 海洋与湖沼, 2014, 45(4): 741-746.
|
[27] |
董妍汝. 大沽河下游主要支流沉积物DOM的来源、结构特征及生态指示[D]. 青岛: 青岛大学, 2020.
|
[28] |
孙晓霞, 孙 松, 张永山, 等. 胶州湾叶绿素a及初级生产力的长期变化[J]. 海洋与湖沼, 2011, 42(5): 654-661.
|
[29] |
王 猛, 王玉珏, 刘 栋, 等. 胶州湾水体和表层沉积物营养环境现状及影响因素[J]. 海洋学报, 2022, 44(10): 49-62.
|
[30] |
宋金明, 李学刚, 袁华茂, 等. 渤黄东海生源要素的生物地球化学[M]. 北京: 科学出版社, 2019.
|
[31] |
BLAIR N E, ALLER R C. The fate of terrestrial organic carbon in the marine environment[J]. Annual Review of Marine Science, 2012, 4(1): 401-423. doi: 10.1146/annurev-marine-120709-142717
|
[32] |
MENG W Q, FEAGIN R A, HU B B, et al. The spatial distribution of blue carbon in the coastal wetlands of China[J]. Estuarine, Coastal and Shelf Science, 2019, 222: 13-20. doi: 10.1016/j.ecss.2019.03.010
|
[33] |
ZHAO Q Q, BAI J H, LU Q Q, et al. Effects of salinity on dynamics of soil carbon in degraded coastal wetlands: implications on wetland restoration[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2017, 97: 12-18. doi: 10.1016/j.pce.2016.08.008
|
[34] |
MA H L, XIAO X T, DING Y, et al. Carbon stocks in the mud areas of the Chinese Marginal Seas[J]. Frontiers in Marine Science, 2023, 10: 1282891. doi: 10.3389/fmars.2023.1282891
|