• 中文核心期刊
  • 中国科技核心期刊
  • ISSN 1007-6336
  • CN 21-1168/X
HE Yuanhong, XU Guojie, CHEN Liqi, GONG Tianjiao, WANG Yucheng, ZENG Chengyu. Characteristics and influencing factors of atmospheric aerosol concentration over the Yellow Sea and the East China Sea[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(1): 64-73. DOI: 10.12111/j.mes.2023-x-0153
Citation: HE Yuanhong, XU Guojie, CHEN Liqi, GONG Tianjiao, WANG Yucheng, ZENG Chengyu. Characteristics and influencing factors of atmospheric aerosol concentration over the Yellow Sea and the East China Sea[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(1): 64-73. DOI: 10.12111/j.mes.2023-x-0153

Characteristics and influencing factors of atmospheric aerosol concentration over the Yellow Sea and the East China Sea

More Information
  • Received Date: June 06, 2023
  • Revised Date: August 16, 2023
  • Accepted Date: August 30, 2023
  • In this paper, a wide range of equipment such as particle size spectrometer and automatic weather station are used to measure atmospheric aerosol, atmospheric temperature and humidity during the period of April 10 to 26, 2022 in the Yellow Sea and the East China Sea. The temporal and spatial distribution of aerosol particle number concentration and particle size spectrum and the occurrence of new particle formation (NPF) events in the Yellow Sea and the East China Sea were studied. The results show that the total concentration of Marine aerosol in coastal areas of Jiangsu is 150.79-313.14/cm3 near the land, while the total concentration of Marine aerosol far away from the land is only about 70/cm3; Number concentration spectrum showed a bimodal distribution, and the peak aerosol concentration is higher in the sea area near the land, and there was no significant correlation between temperature, humidity and aerosol concentration; The NPF event formation rate (FR) was 0.14-1.45/(cm3·s), and the growth rate (GR) was about 2.84-17.00 nm/h. Compared with the results of NPF events on land, the concentration of nucleation mode aerosol particle number observed at sea is 1 to 2 orders of magnitude lower, but there is no significant difference between the generation rate and growth rate. It is concluded that the concentration of nuclear mode aerosol and the generation rate of new particles are not the dominant factors in the growth process of new particles. In the study of an NPF event during observation, it is found that compared with the nuclear mode aerosol, the increase of the number concentration of the accumulated mode aerosol is delayed.

  • [1]
    LANGMANN B, SCANNELL C, O'DOWD C. New directions: organic matter contribution to marine aerosols and cloud condensation nuclei[J]. Atmospheric Environment, 2008, 42(33): 7821-7822. doi: 10.1016/j.atmosenv.2008.09.002
    [2]
    ANDREAE M O, ROSENFELD D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols[J]. Earth-Science Reviews, 2008, 89(1/2): 13-41.
    [3]
    唐孝炎. 大气环境化学[M]. 北京: 高等教育出版社, 1990.
    [4]
    王菲菲. 典型海域气象参数对海洋大气气溶胶粒子数密度谱的影响分析[D]. 合肥: 安徽大学, 2019.
    [5]
    鲁先洋, 李学彬, 秦武斌, 等. 海洋大气气溶胶粒子谱分布及其消光特征分析[J]. 红外与激光工程, 2017, 46(12): 1211002.
    [6]
    孔亚文, 盛立芳, 刘 骞, 等. 海洋−大气过程对南海气溶胶数浓度谱分布的影响[J]. 环境科学, 2016, 37(7): 2443-2452.
    [7]
    PLAUŠKAITĖ K, ŠPIRKAUSKAITĖ N, BYČENKIENĖ S, et al. Characterization of aerosol particles over the southern and South-Eastern Baltic Sea[J]. Marine Chemistry, 190: 13–27.
    [8]
    徐新华, 姚荣奎, 李金龙. 海洋气溶胶对沿海地区降水组成的贡献[J]. 上海环境科学, 1997, 16(10): 12-14.
    [9]
    NILSSON E D, KULMALA M. New particle formation in the continental boundary layer[J]. Journal of Aerosol Science, 1999, 31(Suppl 1): S127-S128.
    [10]
    王志彬, 胡 敏, 吴志军, 等. 大气新粒子生成机制的研究[J]. 化学学报, 2013, 71(4): 519-527.
    [11]
    NIEMINEN T, KERMINEN V M, PETÄJÄ T, et al. Global analysis of continental boundary layer new particle formation based on long-term measurements[J]. Atmospheric Chemistry and Physics, 2018, 18(19): 14737-14756. doi: 10.5194/acp-18-14737-2018
    [12]
    王红磊, 朱 彬, 沈利娟, 等. 南京市夏季大气气溶胶新粒子生成事件分析[J]. 环境科学, 2012, 33(3): 701-710.
    [13]
    黄向鹏. 宁波沿海大气气溶胶粒径分布特征、新粒子生成及化学组分研究[D]. 南京: 南京信息工程大学, 2021.
    [14]
    刘协章. XZC3—1型船用气象仪[J]. 海洋技术, 1991, 10(3): 23-30.
    [15]
    刘宪云, 方佳怡, 李 磊, 等. 基于宽范围粒径谱仪的气溶胶探测方法[J]. 光子学报, 2016, 45(5): 501002.
    [16]
    刘安康. 新疆天山地区气溶胶粒径分布和CCN分布特征的观测研究[D]. 南京: 南京信息工程大学, 2021.
    [17]
    WHITEY K T. The physical characteristics of sulfur aerosols[J]. Atmospheric Environment (1967), 1978, 12(1/2/3): 135-159.
    [18]
    PIRJOLA L, LEHTINEN K E J, HANSSON H C, et al. How important is nucleation in regional/global modelling?[J]. Geophysical Research Letters, 2004, 31(12): L12109.
    [19]
    SHEN L J, WANG H L, LU S, et al. Observation of aerosol size distribution and new particle formation at a coastal city in the Yangtze River Delta, China[J]. Science of the Total Environment, 2016, 565: 1175-1184.
    [20]
    孔祥晨, 王红磊, 张连霞, 等. 鄂尔多斯市夏秋季气溶胶新粒子生成过程影响因素分析[J]. 环境科学, 2020, 41(12): 5295-5305.
    [21]
    ZHANG X R, YIN Y, LIN Z Y, et al. Observation of aerosol number size distribution and new particle formation at a mountainous site in Southeast China[J]. Science of the Total Environment, 2017, 575: 309-320. doi: 10.1016/j.scitotenv.2016.09.212
    [22]
    KULMALA M, VEHKAMÄKI H, PETÄJÄ T, et al. Formation and growth rates of ultrafine atmospheric particles: A review of observations[J]. Journal of Aerosol Science, 2004, 35(2): 143-176. doi: 10.1016/j.jaerosci.2003.10.003
    [23]
    KULMALA M, PETÄJÄ T, NIEMINEN T, et al. Measurement of the nucleation of atmospheric aerosol particles[J]. Nature Protocols, 2012, 7(9): 1651-1667. doi: 10.1038/nprot.2012.091
    [24]
    杨 军, 陈宝君, 银 燕. 云降水物理学[M]. 北京: 气象出版社, 2011.
    [25]
    陈景华, 银 燕, 林振毅, 等. 黄山顶大气气溶胶吸收和散射特性观测分析[J]. 气候与环境研究, 2011, 16(5): 641-648.
    [26]
    王 飞. 不同污染类型下南京气溶胶谱分布特征的观测研究[D]. 南京: 南京信息工程大学, 2012.
    [27]
    韩冰雪. 广州城区大气气溶胶数浓度及其粒径分布特征研究[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2015.
    [28]
    宫君琳, 姚小红. 南海大气颗粒物数浓度(NCN)与云凝结核数浓度(NCCN)分布特征及不同来源颗粒物活化特性分析[J]. 中国海洋大学学报(自然科学版), 2023, 53(8): 16-25.
    [29]
    汤 沛, 邵士勇, 刘 强, 等. 基于船载测量亚微米海洋气溶胶粒径分布特征分析[J]. 光学学报, 2023, 43(6): 0601008.
    [30]
    AN J L, WANG H L, SHEN L J, et al. Characteristics of new particle formation events in Nanjing, China: effect of water-soluble ions[J]. Atmospheric Environment, 2015, 108: 32-40. doi: 10.1016/j.atmosenv.2015.01.038
    [31]
    WANG Z B, HU M, SUN J Y, et al. Characteristics of regional new particle formation in urban and regional background environments in the North China Plain[J]. Atmospheric Chemistry and Physics, 2013, 13(24): 12495-12506.
    [32]
    ZHANG X H, ZHANG Y M, SUN J Y, et al. Characterization of particle number size distribution and new particle formation in an urban environment in Lanzhou, China[J]. Journal of Environmental Sciences, 2017, 51: 342-351.
    [33]
    ZHU Y J, LI K, SHEN Y J, et al. New particle formation in the marine atmosphere during seven cruise campaigns[J]. Atmospheric Chemistry and Physics, 2019, 19(1): 89-113. doi: 10.5194/acp-19-89-2019
    [34]
    吴志军, 胡 敏, 岳玎利, 等. 重污染和新粒子生成过程中城市大气颗粒物数谱分布演变过程[J]. 中国科学:地球科学, 2011, 41(8): 1192-1199.
    [35]
    陈 晨, 胡 敏, 吴志军, 等. 四川乡村点新粒子生成特征及其对云凝结核数浓度的贡献[J]. 中国环境科学, 2014, 34(11): 2764-2772.
  • Related Articles

    [1]YIN Xiaomin, DENG Xue, WEI Yawen, LIU Qian. Study on the distribution and regulation mechanism of pCO2 in the Bohai Sea in summer[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2025, 44(2): 201-211. DOI: 10.12111/j.mes.2024-x-0050
    [2]ZHANG Xue-wei, HAN Zhen. Prediction and analysis of Argo temperature data by ConvGRU model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(4): 628-635. DOI: 10.12111/j.mes.20210054
    [3]LIU Hong-yan, LI Kai-qiang, KANG Bo-lun, QIN Hai-hua. Fe(Ⅲ) reduction and hydrogen production by Fe (Ⅲ)-reducing bacterium Enterococcus sp. ZQ21[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(3): 379-383. DOI: 10.12111/j.mes.20200119
    [4]WANG Shan, LIU Miao, LIU Hong-yan. Characterization of dissimilatory iron reduction and Cr(VI) reduction by Enterobacter sp. L6[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2020, 39(6): 838-843. DOI: 10.12111/j.mes.20190155
    [5]MA Yu-juan, CHEN Yan-long, ZHAO Jian-hua, JIANG Ling-ling. Validation of MODIS aerosol optical depth over Yuandao in the North Yellow Sea[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2020, 39(1): 99-105. DOI: 10.12111/j.mes20200114
    [6]XUE Jin-lin, REN Jing-ling. The effects of sampling and extraction methods on the solubility of trace elements in marine aerosols[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2019, 38(6): 945-953. DOI: 10.12111/j.mes20190619
    [7]WANG Hui, LI Jian-long, ZHANG Hong-hai, YANG Gui-peng. Chemical composition and characteristics of main water soluble ions in atmospheric aerosol over the western Yellow Sea during winter[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2018, 37(3): 349-355. DOI: 10.12111/j.cnki.mes20180306
    [8]HE Tong, YANG Wen-feng, XIE Jian, YU Han-sheng. Distribution characteristics and environmental significance of carbon, nitrogen and phosphorus in core sediments of Daya Bay[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(4): 524-529. DOI: 10.13634/j.cnki.mes.2015.04.009
    [9]DONG Yu-jia, MENG Xiang-feng. Review of the research on the classification of two types of ENSO events[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(3): 473-480. DOI: 10.13634/j.cnki.mes.2015.03.026
    [10]ZHU Sai-zhi, MENG Xiang-feng. Differences between the Northwest Pacific tropical cyclone genesis location of two kinds of El Nio Modoki in autumn[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(2): 255-260. DOI: 10.13634/j.cnki.mes.2015.02.017

Catalog

    Article Metrics

    Article views (84) PDF downloads (13) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return