• 中文核心期刊
  • 中国科技核心期刊
  • ISSN 1007-6336
  • CN 21-1168/X
LIU Binyu, MENG Jiayu, WANG Shengqiang, CHENG Mingxuan, SUN Deyong, ZHANG Xiumei, XU Yongjiu. Remote sensing estimation of total suspended matter concentration in the mussel culture area[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(1): 152-160. DOI: 10.12111/j.mes.2023-x-0134
Citation: LIU Binyu, MENG Jiayu, WANG Shengqiang, CHENG Mingxuan, SUN Deyong, ZHANG Xiumei, XU Yongjiu. Remote sensing estimation of total suspended matter concentration in the mussel culture area[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(1): 152-160. DOI: 10.12111/j.mes.2023-x-0134

Remote sensing estimation of total suspended matter concentration in the mussel culture area

More Information
  • Received Date: June 03, 2023
  • Revised Date: August 02, 2023
  • Accepted Date: August 15, 2023
  • Available Online: August 21, 2023
  • Total suspended matter (TSM) is an important water constituent, influencing seawater’s transparency and primary productivity. Therefore, monitoring TSM concentration is of great significance for evaluating marine ranch environments. Satellite remote sensing has significant advantages in terms of spatial and temporal observations. However, the current TSM product of ocean color remote sensing is for large-scale regions, lacking specific products for small-scale regions, like the marine ranch. In this study, we focused on the mussel culture area around Gouqi island in Shengsi, Zhejiang province, and conducted four observation cruises during different seasons. Based on the in situ data, we proposed a remote sensing model for deriving TSM concentration from the Landsat-8 satellite image with a high spatial resolution (30 m). The model validation showed a good performance, with determination coefficient, root-mean-square error, bias, and mean absolute percentage error of 0.72, 6.59 g/m3, 0.72 g/m3 and 29.8%, respectively. Subsequently, the proposed model was applied to generate TSM products in the mussel culture area using Landsat-8 satellite images in different seasons, and the spatial and temporal variations of TSM were further studied.

  • [1]
    陈 勇, 田 涛, 刘永虎, 等. 我国海洋牧场发展现状、问题及对策(上)[J]. 科学养鱼, 2022 (2): 24-25. doi: 10.3969/j.issn.1004-843X.2022.02.012
    [2]
    陈力群, 张朝晖, 王宗灵. 海洋渔业资源可持续利用的一种模式——海洋牧场[J]. 海岸工程, 2006, 25(4): 71-76. doi: 10.3969/j.issn.1002-3682.2006.04.011
    [3]
    林承刚, 杨红生, 陈 鹰, 等. 现代化海洋牧场建设与发展——第230期双清论坛学术综述[J]. 中国科学基金, 2021, 35(1): 143-152. doi: 10.16262/j.cnki.1000-8217.20200825.005
    [4]
    杨红生. 我国海洋牧场建设回顾与展望[J]. 水产学报, 2016, 40(7): 1133-1140.
    [5]
    DOXARAN D, CASTAING P, LAVENDER S J. Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data[J]. International Journal of Remote Sensing, 2006, 27(11): 2303-2321. doi: 10.1080/01431160500396865
    [6]
    SHEN F, VERHOEF W, ZHOU Y X, et al. Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data[J]. Estuaries and Coasts, 2010, 33(6): 1420-1429. doi: 10.1007/s12237-010-9313-2
    [7]
    ODERMATT D, GITELSON A, BRANDO V E, et al. Review of constituent retrieval in optically deep and complex waters from satellite imagery[J]. Remote Sensing of Environment, 2012, 118: 116-126. doi: 10.1016/j.rse.2011.11.013
    [8]
    TASSAN S. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters[J]. Applied Optics, 1994, 33(12): 2369-2378. doi: 10.1364/AO.33.002369
    [9]
    ZHANG M W, TANG J W, DONG Q, et al. Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery[J]. Remote Sensing of Environment, 2010, 114(2): 392-403. doi: 10.1016/j.rse.2009.09.016
    [10]
    HE X Q, BAI Y, PAN D L, et al. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters[J]. Remote Sensing of Environment, 2013, 133: 225-239. doi: 10.1016/j.rse.2013.01.023
    [11]
    SISWANTO E, TANG J W, YAMAGUCHI H, et al. Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas[J]. Journal of Oceanography, 2011, 67(5): 627-650. doi: 10.1007/s10872-011-0062-z
    [12]
    ZHANG M W, DONG Q, CUI T W, et al. Suspended sediment monitoring and assessment for Yellow River estuary from Landsat TM and ETM+ imagery[J]. Remote Sensing of Environment, 2014, 146: 136-147. doi: 10.1016/j.rse.2013.09.033
    [13]
    QIU Z F, XIAO C, PERRIE W, et al. Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary[J]. Journal of Geophysical Research:Oceans, 2017, 122(1): 276-290. doi: 10.1002/2016JC012412
    [14]
    邵宇杰, 胡越凯, 周 斌, 等. 基于GF-4卫星的杭州湾悬浮泥沙浓度遥感监测研究[J]. 海洋学报, 2020, 42(9): 134-142.
    [15]
    MUELLER J L, FARGION G S, MCCLAIN C R, et al. Ocean optics protocols for satellite ocean color sensor validation, Revision 4, Volume VI: Special topics in ocean optics protocols and appendices[M]. Goddard Space Flight Center: Greenbelt, MD, USA, 2003.
    [16]
    GB 17378.4-2007, 海洋监测规范 第4部分: 海水分析[S].
    [17]
    唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ: 水面以上测量法[J]. 遥感学报, 2004, 8(1): 37-44. doi: 10.11834/jrs.20040106
    [18]
    汪小勇, 唐军武, 李铜基, 等. 水面之上法测量水体光谱的关键技术[J]. 海洋技术, 2012, 31(1): 72-76.
    [19]
    BAI R F, HE X Q, BAI Y, et al. Atmospheric correction algorithm based on the interpolation of ultraviolet and shortwave infrared bands[J]. Optics Express, 2023, 31(4): 6805-6826. doi: 10.1364/OE.478810
    [20]
    VANHELLEMONT Q, RUDDICK K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications[J]. Remote Sensing of Environment, 2018, 216: 586-597. doi: 10.1016/j.rse.2018.07.015
    [21]
    VANHELLEMONT Q, RUDDICK K. Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8[J]. Remote Sensing of Environment, 2015, 161: 89-106. doi: 10.1016/j.rse.2015.02.007
    [22]
    VANHELLEMONT Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives[J]. Remote Sensing of Environment, 2019, 225: 175-192. doi: 10.1016/j.rse.2019.03.010
    [23]
    QIU Z F. A simple optical model to estimate suspended particulate matter in Yellow River Estuary[J]. Optics Express, 2013, 21(23): 27891-27904. doi: 10.1364/OE.21.027891
    [24]
    SMAAL A C, SCHELLEKENS T, VAN STRALEN M R, et al. Decrease of the carrying capacity of the Oosterschelde estuary (SW Delta, NL) for bivalve filter feeders due to overgrazing?[J]. Aquaculture, 2013, 404/405: 28-34. doi: 10.1016/j.aquaculture.2013.04.008
    [25]
    NEWELL R I E. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review[J]. Journal of Shellfish Research, 2004, 23(1): 51-61.
    [26]
    CARVER C E A, MALLET A L. Estimating the carrying capacity of a coastal inlet for mussel culture[J]. Aquaculture, 1990, 88(1): 39-53. doi: 10.1016/0044-8486(90)90317-G
  • Related Articles

    [1]WANG Lin, MENG Qing-hui, MA Yu-juan, WANG Xiang, WANG Xin-xin, CHEN Yan-long. Retrieval of chlorophyll a concentration from Sentinel-2 MSI image in Qinhuangdao coastal area[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(2): 309-314. DOI: 10.12111/j.mes.2022-x-0263
    [2]MENG Qing-hui, LI Yue-ming, WANG Xiang, WANG Lin, WANG Xin-xin, SU Xiu. Remote sensing identification of floating green tide in offshore high suspended sediment water based on Sentinel-2 imagery[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(6): 904-909. DOI: 10.12111/j.mes.2022-x-0179
    [3]FANG Cao, NING Zhi-ming, WEI Fen, XIA Rong-lin, YANG Bin. Key factors affecting the concentrations and structures of nutrients around Weizhou island based on the LOICZ model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(5): 689-696. DOI: 10.12111/j.mes.20210040
    [4]ZHANG Xue-wei, HAN Zhen. Prediction and analysis of Argo temperature data by ConvGRU model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(4): 628-635. DOI: 10.12111/j.mes.20210054
    [5]ZHANG Xi-yuan, WAN Jian-hua, LIU Shan-wei, XU Ming-ming. Inversion of Chlorophyll a concentration in Qinhuangdao sea area based on GOCI satellite data[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(3): 462-467. DOI: 10.12111/j.mes.20200028
    [6]LIU Hong-yan, LI Kai-qiang, KANG Bo-lun, QIN Hai-hua. Fe(Ⅲ) reduction and hydrogen production by Fe (Ⅲ)-reducing bacterium Enterococcus sp. ZQ21[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(3): 379-383. DOI: 10.12111/j.mes.20200119
    [7]WANG Xiang, SU Xiu, ZHANG Hao, WANG Xin-xin, WANG Lin, CHEN Yan-long, ZHAO Jian-hua, XU Jin. Remote sensing based application research of nuclear power plant thermal plume monitoring with different spatial resolution imagery[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2020, 39(4): 646-651. DOI: 10.12111/j.mes.20190036
    [8]SUN Qin-qin, LUO Mei-xue, ZHANG Jia-jin, LAN Yin-yu. Distribution of the thermal discharge pollution of coastal power plant based on Landsat 8[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2020, 39(4): 557-562. DOI: 10.12111/j.mes.20190008
    [9]LUAN Hong, FU Dong-yang, LI Ming-jie, ZENG Ji-sheng, CHEN Qi-dong, XI Meng. Based on Landsat 8 suspended sediment concentration of the Pearl River on each season inversion and analysis[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2017, 36(6): 892-897. DOI: 10.13634/j.cnki.mes20170615
    [10]DONG Yu-jia, MENG Xiang-feng. Review of the research on the classification of two types of ENSO events[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(3): 473-480. DOI: 10.13634/j.cnki.mes.2015.03.026

Catalog

    Article Metrics

    Article views (1313) PDF downloads (47) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return