• 中文核心期刊
  • 中国科技核心期刊
  • CSCD
  • ISSN 1007-6336
  • CN 21-1168/X
ZHANG Ping, LU Jiachang, LI Lang, SHI Tianying, LAI Junxiang, ZHUANG Junlian, LI Jie. Effect of Shell and Cell Inclusion on The Sinking Rate of Diatom[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(6): 927-934. DOI: 10.12111/j.mes.2023-x-0046
Citation: ZHANG Ping, LU Jiachang, LI Lang, SHI Tianying, LAI Junxiang, ZHUANG Junlian, LI Jie. Effect of Shell and Cell Inclusion on The Sinking Rate of Diatom[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(6): 927-934. DOI: 10.12111/j.mes.2023-x-0046

Effect of Shell and Cell Inclusion on The Sinking Rate of Diatom

More Information
  • Received Date: February 28, 2023
  • Revised Date: April 06, 2023
  • Accepted Date: April 02, 2023
  • Available Online: December 07, 2023
  • Diatom sedimentation is an important carbon sink in the ocean, and its rate affects the efficiency of the biological pump. To understand the effects of diatom shell and cell inclusion on the sinking rate of diatom, the sinking rate of live cell, heat killed cell (containing diatom shells and intact cell inclusions but without activity) and diatom shell of 17 common diatom species in Beibu Gulf were measured using SETCOL method during the exponential phase. The results showed that the sinking rate of live diatom, heat killed cells and silica shells were positively linearly correlated with their size (P<0.01). The role of diatom shells and cell inclusions in determining sinking rate was different according to the range of size. The sinking rate of <25 µm diatoms was mainly determined by its shell and the sinking rate of 25 µm to 65 µm diatoms were influenced by both their shell and inclusions. While the sinking rate of large diatom such as Palmeria hardmaniana, was mainly determined by cell inclusion. Generally, the effects of diatom shells on sinking rate decreased with increasing cell size; in contrast, the effects of cell inclusions increased with increasing size. Most of the diatoms, which sinking rate was dominated by their shell, have an ability to connect with other cells by their surface protrusions; however, the species, which sinking rate was dominated by their inclusions, are independent and usually have a large size and flexible in sinking regulation.

  • [1]
    GRUBER N, CLEMENT D, CARTER B R, et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007[J]. Science, 2019, 363(6432): 1193-1199. doi: 10.1126/science.aau5153
    [2]
    DEVRIES T, HOLZER M, PRIMEAU F. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning[J]. Nature, 2017, 542(7640): 215-218. doi: 10.1038/nature21068
    [3]
    PASSOW U, CARLSON C A. The biological pump in a high CO2 world[J]. Marine Ecology Progress Series, 2012, 470: 249-271. doi: 10.3354/meps09985
    [4]
    RIDGWELL A. Evolution of the ocean's "biological pump"[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(40): 16485-16486. doi: 10.1073/pnas.1112236108
    [5]
    李小梅, 夏建荣. 氮磷营养限制影响三角褐指藻光合无机碳利用和碳酸酐酶活性[J]. 水生生物学报, 2013, 37(3): 405-412. doi: 10.7541/2013.36
    [6]
    倪 洁, 刘珊珊, 陈 妍, 等. 光照和硝酸盐浓度对东海原甲藻和三角褐指藻释放挥发性卤代烃的影响[J]. 海洋学报, 2020, 42(12): 119-128.
    [7]
    RAVEN J A, WAITE A M. The evolution of silicification in diatoms: inescapable sinking and sinking as escape?[J]. New Phytologist, 2004, 162(1): 45-61. doi: 10.1111/j.1469-8137.2004.01022.x
    [8]
    GUO S J, SUN J, ZHAO Q B, et al. Sinking rates of phytoplankton in the Changjiang (Yangtze River) estuary: a comparative study between Prorocentrum dentatum and Skeletonema dorhnii bloom[J]. Journal of Marine Systems, 2016, 154: 5-14. doi: 10.1016/j.jmarsys.2015.07.003
    [9]
    GROSS F, ZEUTHEN E. The buoyancy of plankton diatoms: a problem of cell physiology[J]. Proceedings of the Royal Society B:Biological Sciences, 1948, 135(880): 382-389.
    [10]
    WAITE A, FISHER A, THOMPSON P A, et al. Sinking rate versus cell volume relationships illuminate sinking rate control mechanisms in marine diatoms[J]. Marine Ecology Progress Series, 1997, 157: 97-108. doi: 10.3354/meps157097
    [11]
    MIKLASZ K A, DENNY M W. Diatom sinkings speeds: Improved predictions and insight from a modified Stokes' law[J]. Limnology and Oceanography, 2010, 55(6): 2513-2525. doi: 10.4319/lo.2010.55.6.2513
    [12]
    TAYLOR A R. A fast Na+/Ca2+-based action potential in a marine diatom[J]. PLoS One, 2009, 4(3): e4966. doi: 10.1371/journal.pone.0004966
    [13]
    LAVOIE M, RAVEN J A. How can large-celled diatoms rapidly modulate sinking rates episodically?[J]. Journal of Experimental Botany, 2020, 71(12): 3386-3389. doi: 10.1093/jxb/eraa129
    [14]
    BIENFANG P K. SETCOL — a technologically simple and reliable method for measuring phytoplankton sinking rates[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1981, 38(10): 1289-1294. doi: 10.1139/f81-173
    [15]
    孙 军, 李晓倩, 陈建芳, 等. 海洋生物泵研究进展[J]. 海洋学报, 2016, 38(4): 1-21.
    [16]
    GUILLARD R R L. Culture of phytoplankton for feeding marine invertebrates[M]//SMITH W L, CHANLEY M H. Culture of Marine Invertebrate Animals. Boston, MA: Springer, 1975: 29–60.
    [17]
    GUILLARD R R L, RYTHER J H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran[J]. Canadian Journal of Microbiology, 1962, 8(2): 229-239. doi: 10.1139/m62-029
    [18]
    FISHER A E, HARRISON P J. Does carbohydrate content affect the sinking rates of marine diatoms?[J]. Journal of Phycology, 1996, 32(3): 360-365. doi: 10.1111/j.0022-3646.1996.00360.x
    [19]
    ZHANG D Y, WANG Y, CAI J, et al. Bio-manufacturing technology based on diatom micro- and nanostructure[J]. Chinese Science Bulletin, 2012, 57(30): 3836-3849. doi: 10.1007/s11434-012-5410-x
    [20]
    SUN J, LIU D Y. Geometric models for calculating cell biovolume and surface area for phytoplankton[J]. Journal of Plankton Research, 2003, 25(11): 1331-1346. doi: 10.1093/plankt/fbg096
    [21]
    EPPLEY R W, REID F M H, STRICKLAND J D H. Estimates of phytoplankton crop size, growth rate, and primary production[J]. Bulletin Scripps Institution of Oceanography, 1970, 17: 33-42.
    [22]
    SMAYDA T J. The suspension and sinking of phytoplankton in the sea[J]. Oceanography and Marine Biology, 1970, 8: 353-414.
    [23]
    VILLAREAL T A. Buoyancy properties of the giant diatom Ethmodiscus[J]. Journal of Plankton Research, 1992, 14(3): 459-463. doi: 10.1093/plankt/14.3.459
    [24]
    丁 蕾, 支崇远. 环境对硅藻的影响及硅藻对环境的监测[J]. 贵州师范大学学报(自然科学版), 2006, 24(3): 13-16.
    [25]
    TRÉGUER P, BOWLER C, MORICEAU B, et al. Influence of diatom diversity on the ocean biological carbon pump[J]. Nature Geoscience, 2018, 11(1): 27-37. doi: 10.1038/s41561-017-0028-x
    [26]
    PADISÁK J, SORÓCZKI-PINTÉR É, REZNER Z. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton – an experimental study[J]. Hydrobiologia, 2003, 500(1/2/3): 243-257.
    [27]
    GEMMELL B J, OH G, BUSKEY E J, et al. Dynamic sinking behaviour in marine phytoplankton: rapid changes in buoyancy may aid in nutrient uptake[J]. Proceedings of the Royal Society B:Biological Sciences, 2016, 283(1840): 20161126. doi: 10.1098/rspb.2016.1126
    [28]
    GOLDMAN J C. Potential role of large oceanic diatoms in new primary production[J]. Deep Sea research Part I:Oceanographic Research Papers, 1993, 40(1): 159-168. doi: 10.1016/0967-0637(93)90059-C
    [29]
    DURANTE G, BASSET A, STANCA E, et al. Allometric scaling and morphological variation in sinking rate of phytoplankton[J]. Journal of Phycology, 2019, 55(6): 1386-1393. doi: 10.1111/jpy.12916
  • Related Articles

    [1]CHU Lixuan, HOU Wenyu, FU Jie, LYU Meng, ZHANG Jing, YANG Guipeng. Distribution and surface source-sink process of CO in the East China Sea in spring[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2025, 44(3): 332-345. DOI: 10.12111/j.mes.2024-x-0054
    [2]JIN Fei, WANG Ying, CONG Yi, ZHANG Mingxing, LI Zhaochuan, LOU Yadi, YAO Ziwei, WANG Juying. Research on environmental priority pollutants in seawater of China by COMMPS and DYNAMEC methods[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(6): 892-900. DOI: 10.12111/j.mes.2023-x-0094
    [3]ZHANG Xue-wei, HAN Zhen. Prediction and analysis of Argo temperature data by ConvGRU model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(4): 628-635. DOI: 10.12111/j.mes.20210054
    [4]TIAN Li-na, YANG Jin-sheng, ZHOU You-lin, CAO Rui, ZHANG Meng, PAN Yu-ying. The primary study on antioxidase activities of Boleophthalmus pectinirostris exposed to crude oil in intertidal zone[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(1): 135-141. DOI: 10.12111/j.mes.20200170
    [5]TIAN Lin, LI Xiang-lei. Effect of oxybenzone on the photosynthesis and respiration of Gracilaria lemaneiformis[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(5): 760-765. DOI: 10.12111/j.mes.20210042
    [6]WANG Hong-yu, FENG Rui-qi, LIU Hong-yan. Characterization of cell growth and bioflocculant production by Enterococcus sp.Y025 using macro-algae Laminaria japonica[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2018, 37(3): 338-342. DOI: 10.12111/j.cnki.mes20180304
    [7]ZHANG Xin-xin, YIN Yue, DUAN Mei-na, WANG Chao, XIONG De-qi. Effect of bioremediation dispersant and 180# fuel oil on CAT and SOD in Glyptocidaris crenularis[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2017, 36(2): 284-290. DOI: 10.13634/j.cnki.mes20170220
    [8]QIAO Ling, ZHEN Yu, MI Tie-Zhu. Review of the brown tides caused by Aureococcus anophagefferens[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(3): 473-480. DOI: 10.13634/j.cnki.mes20160324
    [9]LI Lei, JIANG Mei, SHEN Xin-qiang, WANG Yun-long, WU Qing-yuan, NIU Jun-xiang, XU Gao-peng. Effects of Cr(VI) on the activities of SOD,concentration of MDA and MTs inhepatopancreas and gilltsissue of Portunus trituberculatus[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(6): 838-843. DOI: 10.13634/j.cnki.mes.2015.06.007
    [10]LI Lei, JIANG Mei, SHEN Xin-qiang, WANG Yun-long, WU Qing-yuan, NIU Jun-xiang, XU Gao-peng. Effects of benzo[a]pyrene exposure on biomarkers in Exopalaemon carinicauda liver[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(4): 513-518. DOI: 10.13634/j.cnki.mes.2015.04.007
  • Cited by

    Periodical cited type(2)

    1. 石天应,陆家昌,庄军莲,赖俊翔,李朗. 濒临死亡哈德掌状藻沉降行为的时频特征. 热带海洋学报. 2025(03): 85-94 .
    2. 魏君,韩丽君,唐小坤,刘西汉,代艳伟,柳祎宁. 滦河口-北戴河海域夏、秋季浮游植物群落时空变化及影响因素. 生态毒理学报. 2024(06): 247-260 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (268) PDF downloads (27) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return