Citation: | CHI Xiaoyu, ZHU Jianbin, MI Tiezhu, ZHEN Yu, WANG Jianyan. Effects of seawater acidification on Skeletonema costatum[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(5): 758-765. DOI: 10.12111/j.mes.2022-x-0351 |
To investigate the effects of seawater acidification, two major factors affecting seawater acidification were selected to investigate their influence on Skeletonema costatum. The growth rate, chlorophyll fluorescence parameters, particulate organic carbon (POC), particulate organic nitrogen (PON) contents and C/N ratio of the algae were measured under different conditions. The results showed that seawater acidification significantly inhibited the growth of S. costatum, with a growth rate of 0.86/d in the acidification group and 0.99/d in the control group, and that this inhibitory effect was mainly attributed to the effect of pCO2. The acidification of seawater had no significant effect on the photosynthetic efficiency of S. costatum. Seawater acidification significantly increased POC and PON by 37.1% and 43.3%, respectively, with POC being affected by both pH and pCO2, and PON being mainly affected by pCO2. It is shown that seawater acidification was benefit to the carbon and nitrogen accumulation of S. costatum; however, no significant variation was observed in the C/N ratio among algal cells under the different acidification treatments.
[1] |
WANG F, HARINDINTWALI J D, YUAN Z, et al. Technologies and perspectives for achieving carbon neutrality[J]. The Innovation, 2021, 2(4): 100180. doi: 10.1016/j.xinn.2021.100180
|
[2] |
GAO G, FU Q Q, BEARDALL J, et al. Combination of ocean acidification and warming enhances the competitive advantage of Skeletonema costatum over a green tide alga, Ulva linza[J]. Harmful Algae, 2019, 85: 101698. doi: 10.1016/j.hal.2019.101698
|
[3] |
GATTUSO J P, LEE K, ROST B, et al. Approaches and tools to manipulate the carbonate chemistry[M]//RIEBESELL U, FABRY V J, HANSSON L, et al. Guide for Best Practices in Ocean Acidification Research and Data Reporting. Luxembourg: Publications Office of the European Union, 2010: 41-52.
|
[4] |
BATES N R, ASTOR Y M, CHURCH M J, et al. A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification[J]. Oceanography, 2014, 27(1): 126-141. doi: 10.5670/oceanog.2014.16
|
[5] |
CALDEIRA K, WICKETT M E. Oceanography: anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365. doi: 10.1038/425365a
|
[6] |
薛银浩, 刘卓苗, 王 昊, 等. 海洋酸化对微藻关键生理过程的调控机制及环境因素的影响[J]. 应用生态学报, 2020, 31(11): 3969-3978. doi: 10.13287/j.1001-9332.202011.032
|
[7] |
ANDERSON S I, BARTON A D, CLAYTON S, et al. Marine phytoplankton functional types exhibit diverse responses to thermal change[J]. Nature Communications, 2021, 12(1): 6413. doi: 10.1038/s41467-021-26651-8
|
[8] |
王为民, 刘光兴, 陈洪举, 等. 短期海洋酸化对黄海近岸浮游植物群落结构的影响[J]. 海洋环境科学, 2016, 35(3): 392-397. doi: 10.13634/j.cnki.mes.2016.03.011
|
[9] |
SHI D L, HONG H Z, SU X, et al. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO2 and pH[J]. Journal of Phycology, 2019, 55(3): 521-533. doi: 10.1111/jpy.12855
|
[10] |
WU Y, GAO K, RIEBESELL U. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum[J]. Biogeosciences, 2010, 7(9): 2915-2923. doi: 10.5194/bg-7-2915-2010
|
[11] |
YANG G Y, GAO K S. Physiological responses of the marine diatom Thalassiosira pseudonana to increased pCO2 and seawater acidity[J]. Marine Environmental Research, 2012, 79: 142-151. doi: 10.1016/j.marenvres.2012.06.002
|
[12] |
常思伟. 区分海洋酸化过程中二氧化碳分压上升和pH下降对束毛藻的影响及机理初探[D]. 厦门: 厦门大学, 2017: 32-52.
|
[13] |
沈 敏, 林 军, 关莹莹. 东海原甲藻和中肋骨条藻适宜生长条件及叶绿素荧光特性的对比[J]. 上海海洋大学学报, 2021, 30(6): 1034-1046. doi: 10.12024/jsou.20200603071
|
[14] |
CORNWALL C E, HARVEY B P, COMEAU S, et al. Understanding coralline algal responses to ocean acidification: meta-analysis and synthesis[J]. Global Change Biology, 2022, 28(2): 362-374. doi: 10.1111/gcb.15899
|
[15] |
娄亚迪. 海洋赤潮藻生长过程中碳源的作用机制[D]. 大连: 大连海事大学, 2020: 66-71.
|
[16] |
QIU J M, SU T C, WANG X, et al. Comparative study of the physiological responses of Skeletonema costatum and Thalassiosira weissflogii to initial pCO2 in batch cultures, with special reference to bloom dynamics[J]. Marine Environmental Research, 2022, 175: 105581. doi: 10.1016/j.marenvres.2022.105581
|
[17] |
ZANG S S, YAN F, YU D D, et al. Reduced salinity interacts with ultraviolet radiation to alter photosystem II function in diatom Skeletonema costatum[J]. Journal of Oceanology and Limnology, 2022, 40(4): 1615-1627. doi: 10.1007/s00343-021-1125-7
|
[18] |
MACKEY K R M, MORRIS J J, MOREL F M M, et al. Response of photosynthesis to ocean acidification[J]. Oceanography, 2015, 28(2): 74-91.
|
[19] |
TRIMBORN S, THOMS S, BRENNEIS T, et al. Two Southern Ocean diatoms are more sensitive to ocean acidification and changes in irradiance than the prymnesiophyte Phaeocystis antarctica[J]. Physiologia Plantarum, 2017, 160(2): 155-170. doi: 10.1111/ppl.12539
|
[20] |
HONG H Z, LI D M, LIN W F, et al. Nitrogen nutritional condition affects the response of energy metabolism in diatoms to elevated carbon dioxide[J]. Marine Ecology Progress Series, 2017, 567: 41-56. doi: 10.3354/meps12033
|
[21] |
CRAWFURD K J, RAVEN J A, WHEELER G L, et al. The response of Thalassiosira pseudonana to long-term exposure to increased CO2 and decreased pH[J]. PLoS One, 2011, 6(10): e26695. doi: 10.1371/journal.pone.0026695
|
[22] |
LI H X, XU T P, MA J, et al. Physiological responses of Skeletonema costatum to the interactions of seawater acidification and the combination of photoperiod and temperature[J]. Biogeosciences, 2021, 18(4): 1439-1449. doi: 10.5194/bg-18-1439-2021
|
[23] |
SPILLING K, PAUL A J, VIRKKALA N, et al. Ocean acidification decreases plankton respiration: evidence from a mesocosm experiment[J]. Biogeosciences, 2016, 13(16): 4707-4719. doi: 10.5194/bg-13-4707-2016
|
[24] |
PASSOW U, CARLSON C A. The biological pump in a high CO2 world[J]. Marine Ecology Progress Series, 2012, 470: 249-271. doi: 10.3354/meps09985
|
[25] |
WEI Y Q, ZHAO Y Y, GUI J, et al. Phosphorus enrichment masked the negative effects of ocean acidification on picophytoplankton and photosynthetic performance in the oligotrophic Indian Ocean[J]. Ecological Indicators, 2021, 125: 107459. doi: 10.1016/j.ecolind.2021.107459
|
[26] |
张 磊, 李航霄, 吴 敏, 等. 不同温度下海水酸化对中肋骨条藻光合生理特性的影响[J]. 江苏海洋大学学报(自然科学版), 2020, 29(1): 1-7.
|
[27] |
WOODGER F J, BADGER M R, PRICE G D. Regulation of cyanobacterial CO2-concentrating mechanisms through transcriptional induction of high-affinity Ci-transport systems[J]. Canadian Journal of Botany, 2005, 83(7): 698-710. doi: 10.1139/b05-050
|
[28] |
XIONG J W, YU L L, ZHANG Z B, et al. Intrinsic kinetic model of photoautotrophic microalgae based on chlorophyll fluorescence analysis[J]. Mathematical Biosciences, 2019, 315: 108234. doi: 10.1016/j.mbs.2019.108234
|
[29] |
柳清杨. 盐度、酸化和UV辐射对中肋骨条藻光合生理的影响[D]. 武汉: 湖北工业大学, 2019: 33-35.
|
[30] |
LI W, WANG T F, CAMPBELL D A, et al. Ocean acidification interacts with variable light to decrease growth but increase particulate organic nitrogen production in a diatom[J]. Marine Environmental Research, 2020, 160: 104965. doi: 10.1016/j.marenvres.2020.104965
|
[31] |
JIN P, GAO K S, BEARDALL J. Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification[J]. Evolution, 2013, 67(7): 1869-1878. doi: 10.1111/evo.12112
|
[32] |
BURKHARDT S, RIEBESELL U. CO2 availability affects elemental composition (C: N: P) of the marine diatom Skeletonema costatum[J]. Marine Ecology Progress Series, 1997, 155: 67-76. doi: 10.3354/meps155067
|
1. |
WANG Shuxing,MI Tiezhu,ZHEN Yu,ZHU Jianbin. Effects of Ocean Acidification on Nitrogen Metabolism of Skeletonema costatum. Journal of Ocean University of China. 2024(05): 1359-1370 .
![]() |