• 中文核心期刊
  • 中国科技核心期刊
  • ISSN 1007-6336
  • CN 21-1168/X
MA Yuxian, YUAN Guangqi, CHEN Yuan, TIAN Ye, YUAN Shuai, XU Ning. Probability distribution of sea ice uniaxial compressive strength in Yingkou based on thermodynamic numerical model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(6): 834-840. DOI: 10.12111/j.mes.2022-x-0315
Citation: MA Yuxian, YUAN Guangqi, CHEN Yuan, TIAN Ye, YUAN Shuai, XU Ning. Probability distribution of sea ice uniaxial compressive strength in Yingkou based on thermodynamic numerical model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(6): 834-840. DOI: 10.12111/j.mes.2022-x-0315

Probability distribution of sea ice uniaxial compressive strength in Yingkou based on thermodynamic numerical model

More Information
  • Received Date: November 16, 2022
  • Revised Date: March 01, 2023
  • Accepted Date: March 22, 2023
  • Available Online: December 07, 2023
  • Sea ice has an important impact on human economic activity in ice areas. Based on the data of sea ice temperature and sea ice salinity observed in Jiangjunshi port, combined with the parametric formula of sea ice brine volume, this paper gives the formula for evaluating the sea ice brine volume fraction based on sea ice temperature. Combined with the results of sea ice temperature profile calculation in the 1951-2018, the evolution process of uniaxial compressive strength of sea ice is reproduced. The analysis of the uniaxial compressive intensity inter-annual average showed a decreasing trend in seasons at a rate of 0.0027 MPa/a. Finally, the probability distribution of sea ice uniaxial compressive intensity in Yingkou sea area was analyzed, and the occurrence probability of sea ice with less intensity increased after 1990s. The analysis of the return period of the sea ice mechanical strength in the Yingkou, showing that the difference between the 1960s and the last 10 years increases with the increase of the recurrence period, and the intensity value of the recurrence period given by the specification is smaller than the calculation results of this paper. This work will provide scientific support for the formulation of disaster prevention and mitigation management strategies for sea ice disasters.

  • [1]
    马玉贤, 关 湃, 许 宁, 等. 辽东湾海洋工程可靠性设计的海冰参数选取[J]. 海洋工程, 2019, 37(3): 136-142. doi: 10.16483/j.issn.1005-9865.2019.03.016
    [2]
    丁德文. 工程海冰学概论[M]. 北京: 海洋出版社, 1999.
    [3]
    HUANG Y, SHI Q Z, SONG A. Model test study of the interaction between ice and a compliant vertical narrow structure[J]. Cold Regions Science and Technology, 2007, 49(2): 151-160. doi: 10.1016/j.coldregions.2007.01.004
    [4]
    王安良, 许 宁, 毕祥军, 等. 卤水体积和应力速率影响下海冰强度的统一表征[J]. 海洋学报, 2016, 38(9): 126-133.
    [5]
    孟广琳, 李志军, 李福成, 等. 渤海北部平整冰抗压强度设计标准研究[J]. 海洋工程, 1989, 7(3): 65-73. doi: 10.16483/j.issn.1005-9865.1989.03.007
    [6]
    LIGHT B, MAYKUT G A, GRENFELL T C. Effects of temperature on the microstructure of first-year Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2003, 108(C2): 3051.
    [7]
    GOUGH A J, MAHONEY A R, LANGHORNE P J, et al. Sea ice salinity and structure: a winter time series of salinity and its distribution[J]. Journal of Geophysical Research:Oceans, 2012, 117(C3): C03008.
    [8]
    WANG Q, LU P, LEPPÄRANTA M, et al. Physical properties of summer sea ice in the Pacific sector of the Arctic during 2008–2018[J]. Journal of Geophysical Research:Oceans, 2020, 125(9): e2020JC016371.
    [9]
    李志军, 张丽敏, 卢 鹏, 等. 渤海海冰孔隙率对单轴压缩强度影响的实验研究[J]. 中国科学: 技术科学, 2011, 41(10): 1329-1335.
    [10]
    MAYKUT G A, UNTERSTEINER N. Some results from a time-dependent thermodynamic model of sea ice[J]. Journal of Geophysical Research:Oceans, 1971, 76(6): 1550-1575. doi: 10.1029/JC076i006p01550
    [11]
    程 斌. 一维海冰热力模式的守恒型差分格式和数值模拟[J]. 海洋通报, 1996, 15(4): 8-16.
    [12]
    马玉贤, 王 玉, 於 凡, 等. 辽东湾红沿河附近海域2017-2018年冬季气温−水温−冰情关系研究[J]. 冰川冻土, 2022, 44(5): 1482-1491.
    [13]
    HY/T 047-2016, 工程海冰技术规范[S].
    [14]
    LAUNIAINEN J, CHENG B. Modelling of ice thermodynamics in natural water bodies[J]. Cold Regions Science and Technology, 1998, 27(3): 153-178. doi: 10.1016/S0165-232X(98)00009-3
    [15]
    马玉贤, 谭红建, 于福祥, 等. 基于海冰热力学原理的营口海域冰厚演变规律及工程应用[J]. 海洋环境科学, 2022, 41(6): 930-936. doi: 10.12111/j.mes.2022-x-0008
    [16]
    MA Y X, CHENG B, XU N, et al. Long-term ice conditions in Yingkou, a coastal region northeast of the Bohai Sea, between 1951/1952 and 2017/2018: modeling and observations[J]. Remote Sensing, 2022, 14(1): 182. doi: 10.3390/rs14010182
    [17]
    HUANG Y. Model test study of the nonsimultaneous failure of ice before wide conical structures[J]. Cold Regions Science and Technology, 2010, 63(3): 87-96. doi: 10.1016/j.coldregions.2010.06.004
    [18]
    SODHI D S. Crushing failure during ice-structure interaction[J]. Engineering Fracture Mechanics, 2001, 68(17/18): 1889-1921.
    [19]
    SCHULSON E M. Brittle failure of ice[J]. Engineering Fracture Mechanics, 2002, 68(17/18): 1839-1887.
    [20]
    刘永青, 李辉辉, 史文奇, 等. 单层平整冰厚设计条件推算方法的比较——以辽东湾JZ20-2海域为例[J]. 海洋环境科学, 2017, 36(6): 941-946.
  • Related Articles

    [1]YIN Xiaomin, DENG Xue, WEI Yawen, LIU Qian. Study on the distribution and regulation mechanism of pCO2 in the Bohai Sea in summer[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2025, 44(2): 201-211. DOI: 10.12111/j.mes.2024-x-0050
    [2]SUN Jingqi, LI Chenrui, XU Yingjun, YAN Yu, DENG Lei. Reconstruction of spatial distribution of sea ice in Bohai Sea from 1988 to 2015 based on space-time weighted KNN algorithm[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(3): 438-447. DOI: 10.12111/j.mes.2023-x-0230
    [3]ZHANG Xue-wei, HAN Zhen. Prediction and analysis of Argo temperature data by ConvGRU model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(4): 628-635. DOI: 10.12111/j.mes.20210054
    [4]LIU Meng-meng, ZHANG Yong, CUI Quan-gang. Sources, distributions and controls of chromophoric dissolved organic matter in the Bohai Sea and the North Yellow Sea[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(4): 572-578. DOI: 10.12111/j.mes2021-x-0027
    [5]LIU Hong-yan, LI Kai-qiang, KANG Bo-lun, QIN Hai-hua. Fe(Ⅲ) reduction and hydrogen production by Fe (Ⅲ)-reducing bacterium Enterococcus sp. ZQ21[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(3): 379-383. DOI: 10.12111/j.mes.20200119
    [6]WANG Shan, LIU Miao, LIU Hong-yan. Characterization of dissimilatory iron reduction and Cr(VI) reduction by Enterobacter sp. L6[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2020, 39(6): 838-843. DOI: 10.12111/j.mes.20190155
    [7]GU Jie, QIAN Cong-rui, LIANG Hui-di, KUANG Cui-ping, ZUO Li-ming. Seasonal and spatial distribution of chemical oxygen demand (COD) in Caofeidian sea area[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2017, 36(4): 578-583. DOI: 10.13634/j.cnki.mes20170415
    [8]GONG Ci, YANG Gui-peng. Distributions of dissolved carbohydrates in the northern South China Sea during summer[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2017, 36(3): 321-327. DOI: 10.13634/j.cnki.mes20170301
    [9]HE Tong, YANG Wen-feng, XIE Jian, YU Han-sheng. Distribution characteristics and environmental significance of carbon, nitrogen and phosphorus in core sediments of Daya Bay[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(4): 524-529. DOI: 10.13634/j.cnki.mes.2015.04.009
    [10]DONG Yu-jia, MENG Xiang-feng. Review of the research on the classification of two types of ENSO events[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(3): 473-480. DOI: 10.13634/j.cnki.mes.2015.03.026
  • Cited by

    Periodical cited type(2)

    1. 徐进军,李宁,金强,刘吉华,楼达,滕建成. 黄骅坳陷石炭-二叠系凝析油气地球化学特征及来源分析. 吉林大学学报(地球科学版). 2020(02): 644-652 .
    2. 吴健,王敏,叶春梅,徐志豪,沙晨燕,张佳怡,黄沈发. 基于Web of Science的环境领域中海洋溢油污染事故相关研究热点计量学分析. 法医学杂志. 2020(04): 461-469 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (2973) PDF downloads (20) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return