Citation: | YE Han, WANG Shengqiang, SUN Deyong, LI Junsheng, ZHU Yuanli, ZHANG Hailong, ZHANG yue. Assessment of water quality in the Eastern China Seas based on water transparency satellite products[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(4): 523-533. DOI: 10.12111/j.mes.2022-x-0244 |
Water quality condition is of great significance for protection of marine ecological environment and sustainable development. In this study, from the perspective of water transparency (Zsd), we proposed a new method for evaluating water conditions based on long time series MODIS optical satellite remote sensing data in the Eastern China Seas. The method classifies water quality using transparency and trends, and the water can be divided into High and Increasing (HI) type, High and No change trend (HN) type, High and Decreasing (HD) type, Low and Increasing (LI) type, Low and No change trend (LN) and Low and Decreasing (LD) type, were used to analyze the water quality in the Eastern China Seas and its influencing factors. The results showed that most of the coastal waters of the Eastern China Seas are LN type, while the waters in Jiangsu Coast (near Lianyungang) are LD type in the past 20 years. The offshore waters mostly beyond to HN type, while some areas of the South of South Yellow Sea and the East China Sea shelf generally showed HD type waters. Phytoplankton and suspended sediment are the dominant influence factors of the water condition in the offshore and coastal waters, respectively; and in the Zhejiang-Fujian coast, the water condition is probably modulated by the both of phytoplankton and suspended sediment.
[1] |
GU J, HU C F, KUANG C P, et al. A water quality model applied for the rivers into the Qinhuangdao coastal water in the Bohai Sea, China[J]. Journal of Hydrodynamics, Ser. B, 2016, 28(5): 905-913. doi: 10.1016/S1001-6058(16)60691-1
|
[2] |
GAI Y Y, YU D F, ZHOU Y, et al. An improved model for chlorophyll-a concentration retrieval in coastal waters based on UAV-borne hyperspectral imagery: a case study in Qingdao, China[J]. Water, 2020, 12(10): 2769. doi: 10.3390/w12102769
|
[3] |
屠建波, 陈燕珍, 万萌萌, 等. 2009–2018年天津近岸海域水质状况及变化趋势分析[J]. 海洋环境科学, 2021, 40(6): 873-879. doi: 10.12111/j.mes.2021-x-0094
|
[4] |
BAI S Y, GAO J X, SUN D Y, et al. Monitoring water transparency in shallow and eutrophic lake waters based on GOCI observations[J]. Remote Sensing, 2020, 12(1): 163. doi: 10.3390/rs12010163
|
[5] |
贾后磊, 苏 文, 黄华梅, 等. 海岸带和内陆水体透明度动态变化特征及其主导影响因素[J]. 光学学报, 2018, 38(3): 0301001.
|
[6] |
ZHOU Y, YU D F, YANG Q, et al. Variations of water transparency and impact factors in the Bohai and Yellow Seas from satellite observations[J]. Remote Sensing, 2021, 13(3): 514. doi: 10.3390/rs13030514
|
[7] |
叶 晗, 史玥双, 梁涵玮, 等. 南黄海透明度的时空分异特征及影响因素分析[J]. 海洋学报, 2022, 44(3): 128-136.
|
[8] |
CHAM D D, SON N T, NGUYEN M Q, et al. An analysis of shoreline changes using combined multitemporal remote sensing and digital evaluation model[J]. Civil Engineering Journal, 2020, 6(1): 1-10. doi: 10.28991/cej-2020-03091448
|
[9] |
HUOVINEN P, RAMÍREZ J, CAPUTO L, et al. Mapping of spatial and temporal variation of water characteristics through satellite remote sensing in Lake Panguipulli, Chile[J]. Science of the Total Environment, 2019, 679: 196-208. doi: 10.1016/j.scitotenv.2019.04.367
|
[10] |
GONG G C, WEN Y H, WANG B W, et al. Seasonal variation of chlorophyll a concentration, primary production and environmental conditions in the subtropical East China Sea[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2003, 50(6/7): 1219-1236.
|
[11] |
SHI W, WANG M H. Satellite views of the Bohai Sea, Yellow Sea, and East China Sea[J]. Progress in Oceanography, 2012, 104: 30-45. doi: 10.1016/j.pocean.2012.05.001
|
[12] |
何贤强, 潘德炉, 黄二辉, 等. 中国海透明度卫星遥感监测[J]. 中国工程科学, 2004, 6(9): 33-37. doi: 10.3969/j.issn.1009-1742.2004.09.007
|
[13] |
LEE Z, SHANG S L, HU C M, et al. Secchi disk depth: A new theory and mechanistic model for underwater visibility[J]. Remote Sensing of Environment, 2015, 169: 139-149. doi: 10.1016/j.rse.2015.08.002
|
[14] |
MAO Y, WANG S Q, QIU Z F, et al. Variations of transparency derived from GOCI in the Bohai Sea and the Yellow Sea[J]. Optics Express, 2018, 26(9): 12191-12209. doi: 10.1364/OE.26.012191
|
[15] |
MI B B, ZHANG Y, MEI X. The sediment distribution characteristics and transport pattern in the eastern China seas[J]. Quaternary International, 2022, 629: 44-52. doi: 10.1016/j.quaint.2020.11.020
|
[16] |
纪晨旭. 基于卫星重构数据的东中国海海表温度与叶绿素浓度关系研究[D]. 南京: 南京信息工程大学, 2019.
|
[17] |
朱 庆. 东中国海浮游植物种类遥感反演研究[D]. 上海: 华东师范大学, 2021.
|
[18] |
O'REILLY J E, MARITORENA S, MITCHELL B G, et al. Ocean color chlorophyll algorithms for SeaWiFS[J]. Journal of Geophysical Research:Oceans, 1998, 103(C11): 24937-24953. doi: 10.1029/98JC02160
|
[19] |
张 琳. 静止轨道海洋水色卫星遥感产品的真实性检验研究[D]. 杭州: 杭州师范大学, 2017.
|
[20] |
SISWANTO E, TANG J W, YAMAGUCHI H, et al. Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas[J]. Journal of Oceanography, 2011, 67(5): 627-650. doi: 10.1007/s10872-011-0062-z
|
[21] |
TASSAN S. Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters[J]. Applied Optics, 1994, 33(12): 2369-2378. doi: 10.1364/AO.33.002369
|
[22] |
HU Z F, PAN D L, HE X Q, et al. Diurnal variability of turbidity fronts observed by geostationary satellite ocean color remote sensing[J]. Remote Sensing, 2016, 8(2): 147. doi: 10.3390/rs8020147
|
[23] |
汪 攀, 刘毅敏. Sen's斜率估计与Mann-Kendall法在设备运行趋势分析中的应用[J]. 武汉科技大学学报, 2014, 37(6): 454-457,472.
|
[24] |
WANG S Q, LV J, NIE J W, et al. Dynamics of euphotic zone depth in the Bohai Sea and Yellow Sea[J]. Science of the Total Environment, 2021, 751: 142270. doi: 10.1016/j.scitotenv.2020.142270
|
[25] |
HE X Q, PAN D L, BAI Y, et al. Recent changes of global ocean transparency observed by SeaWiFS[J]. Continental Shelf Research, 2017, 143: 159-166. doi: 10.1016/j.csr.2016.09.011
|
[26] |
龙小虎. 台湾海峡中部夏季水动力情况及悬浮颗粒的分布与输运[D]. 舟山: 浙江海洋大学, 2018.
|
[27] |
杨雪飞. 基于GOCI和数值模拟的东海近岸悬浮泥沙浓度逐时变化研究[D]. 上海: 中国科学院大学, 2016.
|
[28] |
GEYER W R, HILL P S, KINEKE G C. The transport, transformation and dispersal of sediment by buoyant coastal flows[J]. Continental Shelf Research, 2004, 24(7/8): 927-949.
|
[29] |
陈黄蓉, 张靖玮, 王胜强, 等. 长江口及邻近海域的浊度日变化遥感研究[J]. 光学学报, 2020, 40(5): 0501003.
|
[30] |
CONSTANTIN S, CONSTANTINESCU Ș, DOXARAN D. Long-term analysis of turbidity patterns in Danube Delta coastal area based on MODIS satellite data[J]. Journal of Marine Systems, 2017, 170: 10-21. doi: 10.1016/j.jmarsys.2017.01.016
|
[31] |
LIU J P, LI A C, XU K H, et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea[J]. Continental Shelf Research, 2006, 26(17/18): 2141-2156.
|