• 中文核心期刊
  • 中国科技核心期刊
  • CSCD
  • ISSN 1007-6336
  • CN 21-1168/X
REN Xiao-zhong, ZHOU Yin-xin, CHE Zong-long, LIU Hai-bo, HU Wei, JIANG Heng-zhi. A review: the construction of flow field and its interaction with fish in high-density seawater aquaculture system[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(3): 483-492. DOI: 10.12111/j.mes.2022-x-0158
Citation: REN Xiao-zhong, ZHOU Yin-xin, CHE Zong-long, LIU Hai-bo, HU Wei, JIANG Heng-zhi. A review: the construction of flow field and its interaction with fish in high-density seawater aquaculture system[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(3): 483-492. DOI: 10.12111/j.mes.2022-x-0158

A review: the construction of flow field and its interaction with fish in high-density seawater aquaculture system

More Information
  • Received Date: June 15, 2022
  • Revised Date: December 18, 2022
  • Accepted Date: November 20, 2022
  • Available Online: June 13, 2023
  • One of the typical model of high-density seawater aquaculture system is recirculating aquaculture system. It is an emerging aquaculture mode which synthesizes multidisciplinary knowledge, such as biology, informatics, engineering, fluid mechanics and so on. Compared with the traditional aquaculture mode, it breaks through the limitations of external conditions including climate and hydrology. And it covers a smaller area with higher utilization rate of water resources and discharges almost no pollution to the environment, which make it become an important way to realize the sustainable development of fishery. However, in our country, there are currently so many researches on the breeding of fish fry, water treatment technology and the improvement of breeding equipment, ignoring the research on the flow field characteristics of culture pond and their interaction with fish. This paper reviews the development status of recirculating aquaculture system at home and abroad, the research method of aquaculture tank flow field, and the interaction between flow field and fish, and summarizes the shortcomings of the current researches on aquaculture tank flow field, which can provide reference for the improvement of aquaculture facilities and the optimization of aquaculture environment in the future, so as to realize the efficient and clean production of recirculating aquaculture system.

  • [1]
    任效忠, 王江竹, 张 倩, 等. 方形圆弧角养殖池进水结构对流场影响的试验研究[J]. 大连海洋大学学报, 2020, 35(5): 726-732. doi: 10.16535/j.cnki.dlhyxb.2020-097
    [2]
    顾海涛, 李明爽, 刘兴国. 水产养殖机械发展现状、问题与挑战及发展建议[J]. 中国水产, 2022 (8): 42-46. doi: 10.3969/j.issn.1002-6681.2022.8.zhongguosc202208018
    [3]
    张建国. 高效设施循环水养殖模式的研究[J]. 农机科技推广, 2017 (4): 24-25. doi: 10.3969/j.issn.1671-3036.2017.04.010
    [4]
    薛博茹, 于林平, 张 倩, 等. 进径比对矩形圆弧角养殖池水动力特性影响[J]. 水产学报, 2021, 45(3): 444-452.
    [5]
    唐茹霞, 史 策, 刘 鹰. 循环水养殖系统管理运行存在主要问题调查分析[J]. 广东海洋大学学报, 2018, 38(1): 100-106. doi: 10.3969/j.issn.1673-9159.2018.01.014
    [6]
    车宗龙, 任效忠, 张 倩. 循环水养殖系统中水动力特性及其与鱼类相互影响研究进展[J]. 大连海洋大学学报, 2021, 36(5): 886-898. doi: 10.16535/j.cnki.dlhyxb.2021-104
    [7]
    任效忠, 王江竹, 薛博茹, 等. 方形圆弧角海水养殖池排污特性的试验研究[J]. 海洋环境科学, 2021, 40(5): 790-797. doi: 10.12111/j.mes.20200166
    [8]
    MARTINS C I M, EDING E H, VERDEGEM M C J, et al. New developments in recirculating aquaculture systems in Europe: a perspective on environmental sustainability[J]. Aquacultural Engineering, 2010, 43(3): 83-93. doi: 10.1016/j.aquaeng.2010.09.002
    [9]
    蔡 雨. 日本鳗鲡循环水养殖技术及发展史[J]. 农村·农业·农业(B版), 2021 (12): 60-62.
    [10]
    王江竹, 宛 立, 任效忠, 等. 循环水养殖中水动力特性对鱼类影响的研究进展[J]. 水产科学, 2020, 39(3): 458-464. doi: 10.16378/j.cnki.1003-1111.2020.03.021
    [11]
    谢 龙. 工厂化循环水养殖模式现状分析[J]. 当代水产, 2019, 44(8): 90-91. doi: 10.3969/j.issn.1674-9049.2019.08.026
    [12]
    朱建新, 刘 慧, 程海华, 等. 工厂化循环水养殖技术研究与产业化发展[J]. 中国水产, 2022 (10): 41-49.
    [13]
    刘 鹰, 刘宝良. 我国海水工业化养殖面临的机遇和挑战[J]. 渔业现代化, 2012, 39(6): 1-4,9. doi: 10.3969/j.issn.1007-9580.2012.06.001
    [14]
    姜 新. 新型声学多普勒流速仪及其应用[J]. 河南水利与南水北调, 2017, 45(7): 95-96. doi: 10.3969/j.issn.1673-8853.2017.07.049
    [15]
    严 松, 吴 浩, 孙大鹏, 等. 声学多普勒流速仪在水槽流速测量中的应用[J]. 实验室研究与探索, 2017, 36(5): 9-13. doi: 10.3969/j.issn.1006-7167.2017.05.003
    [16]
    陈根华, 詹 斌, 王海龙, 等. 粒子图像测速发展综述[J]. 南昌工程学院学报, 2019, 38(3): 90-96. doi: 10.3969/j.issn.1006-4869.2019.03.017
    [17]
    STERCZYŃSKA M, STACHNIK M, POREDA A, et al. The improvement of flow conditions in a whirlpool with a modified bottom: an experimental study based on particle image velocimetry (PIV)[J]. Journal of Food Engineering, 2021, 289: 110164. doi: 10.1016/j.jfoodeng.2020.110164
    [18]
    杨坪坪, 张会兰, 王云琦, 等. 基于粒子图像测速的坡面流水动力学特性[J]. 农业工程学报, 2020, 36(17): 115-124. doi: 10.11975/j.issn.1002-6819.2020.17.014
    [19]
    QUARESMA A L, FERREIRA R M L, PINHEIRO A N. Comparative analysis of particle image velocimetry and acoustic Doppler velocimetry in relation to a pool-type fishway flow[J]. Journal of Hydraulic Research, 2017, 55(4): 582-591. doi: 10.1080/00221686.2016.1275051
    [20]
    黄铮铮, 史宪莹, 张 倩, 等. CFD技术在循环水养殖系统构建中的研究现状与展望[J]. 科学养鱼, 2021 (5): 3-4. doi: 10.3969/j.issn.1004-843X.2021.05.002
    [21]
    刘海波, 任效忠, 张 倩, 等. 循环水养殖池内鱼类运动数值模型的建立—以许氏平鲉为例[J]. 大连海洋大学学报, 2021, 36(6): 995-1002. doi: 10.16535/j.cnki.dlhyxb.2021-160
    [22]
    任效忠, 张 倩, 姜恒志, 等. 单通道方形海水养殖池基于流场均匀性的结构优化研究[J]. 海洋环境科学, 2021, 40(2): 287-293. doi: 10.12111/j.mes.20190288
    [23]
    任效忠, 薛博茹, 姜恒志, 等. 双进水管系统对单通道矩形圆弧角养殖池水动力特性影响的数值研究[J]. 海洋环境科学, 2021, 40(1): 50-56. doi: 10.12111/j.mes.20190234
    [24]
    史宪莹, 李 猛, 姜恒志, 等. 长宽比参数对圆弧角海水养殖池水动力特性影响的数值研究[J]. 海洋环境科学, 2022, 41(6): 921-929. doi: 10.13634/j.cnki.mes.2022.06.021
    [25]
    LIU Y, LIU B L, LEI J L, et al. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(4): 912-920. doi: 10.1007/s00343-017-6051-3
    [26]
    XIN Z Q, WU C J. Numerical simulations and vorticity dynamics of self-propelled swimming of 3D bionic fish[J]. Science China Physics, Mechanics and Astronomy, 2012, 55(2): 272-283. doi: 10.1007/s11433-011-4603-7
    [27]
    夏侯唐凡, 陈江涛, 邵志栋, 等. 随机和认知不确定性框架下的CFD模型确认度量综述[J]. 航空学报, 2022, 43(8): 174-190. doi: 10.7527/j.issn.1000-6893.2022.8.hkxb202208013
    [28]
    MOCHEK A D, PAVLOV D S. Comparative analysis of fish distribution in lentic and lotic ecosystems (review)[J]. Inland Water Biology, 2021, 14(2): 196-204. doi: 10.1134/S1995082921020103
    [29]
    DUARTE S, REIG L, MASALÓ I, et al. Influence of tank geometry and flow pattern in fish distribution[J]. Aquacultural Engineering, 2011, 44(2): 48-54. doi: 10.1016/j.aquaeng.2010.12.002
    [30]
    SKOV P V, ELUND I, PARGANA A M. No evidence for a bioenergetic advantage from forced swimming in rainbow trout under a restrictive feeding regime[J]. Frontiers in Physiology, 2015, 6: 31.
    [31]
    KULCZYKOWSKA E, VÁZQUEZ F J S. Neurohormonal regulation of feed intake and response to nutrients in fish: aspects of feeding rhythm and stress[J]. Aquaculture Research, 2010, 41(5): 654-667. doi: 10.1111/j.1365-2109.2009.02350.x
    [32]
    MERINO G E, PIEDRAHITA R H, CONKLIN D E. Effect of water velocity on the growth of California halibut (Paralichthys californicus) juveniles[J]. Aquaculture, 2007, 271(1/2/3/4): 206-215.
    [33]
    SCHRAM E, VERDEGEM M C J, WIDJAJA R T O B H, et al. Impact of increased flow rate on specific growth rate of juvenile turbot (Scophthalmus maximus, Rafinesque 1810)[J]. Aquaculture, 2009, 292(1/2): 46-52.
    [34]
    FOSS A, IMSLAND A K, ROTH B, et al. Interactive effects of oxygen saturation and ammonia on growth and blood physiology in juvenile turbot[J]. Aquaculture, 2007, 271(1/2/3/4): 244-251.
    [35]
    DAVIDSON J, SUMMERFELT S. Solids flushing, mixing, and water velocity profiles within large (10 and 150 m3) circular“Cornell-type” dual-drain tanks[J]. Aquacultural Engineering, 2004, 32(1): 245-271. doi: 10.1016/j.aquaeng.2004.03.009
    [36]
    戴东宸. 玻尔兹曼方程模拟鱼等水生动物游动数学模型及工程应用[D]. 北京: 清华大学, 2016.
    [37]
    李 丹, 林小涛, 朱志明, 等. 不同流速下杂交鲟幼鱼游泳状态与活动代谢研究[J]. 水生生物学报, 2011, 35(4): 578-585.
    [38]
    PALSTRA A P, PLANAS J V. Fish under exercise[J]. Fish Physiology and Biochemistry, 2011, 37(2): 259-272. doi: 10.1007/s10695-011-9505-0
    [39]
    GRIFFITHS S W, ARMSTRONG J D. Differential responses of kin and nonkin salmon to patterns of water flow: does recirculation influence aggression?[J]. Animal Behaviour, 2000, 59(5): 1019-1023. doi: 10.1006/anbe.2000.1393
    [40]
    NI M, WEN H S, LI J F, et al. Effects of stocking density on mortality, growth and physiology of juvenile Amur sturgeon (Acipenser schrenckii)[J]. Aquaculture Research, 2016, 47(5): 1596-1604. doi: 10.1111/are.12620
    [41]
    LIN W, LI L, CHEN J, et al. Long-term crowding stress causes compromised nonspecific immunity and increases apoptosis of spleen in grass carp (Ctenopharyngodon idella)[J]. Fish & Shellfish Immunology, 2018, 80: 540-545.
    [42]
    LONG L N, ZHANG H G, NI Q, et al. Effects of stocking density on growth, stress, and immune responses of juvenile Chinese sturgeon (Acipenser sinensis) in a recirculating aquaculture system[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2019, 219: 25-34.
    [43]
    YARAHMADI P, MIANDARE H K, FAYAZ S, et al. Increased stocking density causes changes in expression of selected stress- and immune-related genes, humoral innate immune parameters and stress responses of rainbow trout (Oncorhynchus mykiss)[J]. Fish & Shellfish Immunology, 2016, 48: 43-53.
    [44]
    MUHAWENIMANA V, WILSON C A M E, CABLE J. Fish swimming kinematics in a turbulent wake: To spill or not to spill?[J]. E3S Web of Conferences, 2018, 40: 03024. doi: 10.1051/e3sconf/20184003024
    [45]
    MENG L, WANG W P, LI T Y, et al. Evaluation of the effects of shear stress on crucian carps passing through turbines[J]. IOP Conference Series:Earth and Environmental Science, 2021, 774: 012147. doi: 10.1088/1755-1315/774/1/012147
    [46]
    FILELLA A, NADAL F, SIRE C, et al. Model of collective fish behavior with hydrodynamic interactions[J]. Physical Review Letters, 2018, 120(19): 198101. doi: 10.1103/PhysRevLett.120.198101
    [47]
    LIAO J C. A review of fish swimming mechanics and behaviour in altered flows[J]. Philosophical Transactions of the Royal Society B, 2007, 362(1487): 1973-1993. doi: 10.1098/rstb.2007.2082
    [48]
    SVENDSEN J C, SKOV J, BILDSOE M, et al. Intra-school positional preference and reduced tail beat frequency in trailing positions in schooling roach under experimental conditions[J]. Journal of Fish Biology, 2003, 62(4): 834-846. doi: 10.1046/j.1095-8649.2003.00068.x
    [49]
    LI L, RAVI S, XIE G M, et al. Using a robotic platform to study the influence of relative tailbeat phase on the energetic costs of side-by-side swimming in fish[J]. Proceedings of the Royal Society A, 2021, 477(2249): 20200810. doi: 10.1098/rspa.2020.0810
    [50]
    WEIHS D. Hydromechanics of fish schooling[J]. Nature, 1973, 241(5387): 290-291. doi: 10.1038/241290a0
    [51]
    HE Z, FALTINSEN O M, FREDHEIM A, et al. The influence of fish on the mooring loads of a floating net cage[J]. Journal of Fluids and Structures, 2018, 76: 384-395. doi: 10.1016/j.jfluidstructs.2017.10.016
    [52]
    FENG Y K, LIU H X, SU Y Y, et al. Numerical study on the hydrodynamics of C-turn maneuvering of a tuna-like fish body under self-propulsion[J]. Journal of Fluids and Structures, 2020, 94: 102954. doi: 10.1016/j.jfluidstructs.2020.102954
    [53]
    SAKAKIBARA J, NAKAGAWA M, YOSHIDA M. Stereo-PIV study of flow around a maneuvering fish[J]. Experiments in Fluids, 2004, 36(2): 282-293. doi: 10.1007/s00348-003-0720-z
    [54]
    MENDELSON L, TECHET A H. Quantitative wake analysis of a freely swimming fish using 3D synthetic aperture PIV[J]. Experiments in Fluids, 2015, 56(7): 135. doi: 10.1007/s00348-015-2003-x
    [55]
    DRUCKER E G, LAUDER G V. Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish[J]. Journal of Experimental Biology, 2001, 204(Pt 17): 2943-2958.
    [56]
    MÜLLER U K, VAN DEN HEUVEL B L E, STAMHUIS E J, et al. Fish foot prints: morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus Risso)[J]. Journal of Experimental Biology, 1997, 200(Pt 22): 2893-2906.
    [57]
    PLEW D R, KLEBERT P, ROSTEN T W, et al. Changes to flow and turbulence caused by different concentrations of fish in a circular tank[J]. Journal of Hydraulic Research, 2015, 53(3): 364-383. doi: 10.1080/00221686.2015.1029016
    [58]
    LUNGER A, RASMUSSEN M R, LAURSEN J, et al. Fish stocking density impacts tank hydrodynamics[J]. Aquaculture, 2006, 254(1/2/3/4): 370-375.
    [59]
    KLEBERT P, LADER P, GANSEL L, et al. Hydrodynamic interactions on net panel and aquaculture fish cages: a review[J]. Ocean Engineering, 2013, 58: 260-274. doi: 10.1016/j.oceaneng.2012.11.006
    [60]
    MASALÓ I, OCA J. Influence of fish swimming on the flow pattern of circular tanks[J]. Aquacultural Engineering, 2016, 74: 84-95. doi: 10.1016/j.aquaeng.2016.07.001
    [61]
    GORLE J M R, TERJESEN B F, MOTA V C, et al. Water velocity in commercial RAS culture tanks for Atlantic salmon smolt production[J]. Aquacultural Engineering, 2018, 81: 89-100. doi: 10.1016/j.aquaeng.2018.03.001
    [62]
    TANG M F, XU T J, DONG G H, et al. Numerical simulation of the effects of fish behavior on flow dynamics around net cage[J]. Applied Ocean Research, 2017, 64: 258-280. doi: 10.1016/j.apor.2017.03.006
    [63]
    GANSEL L C, RACKEBRANDT S, OPPEDAL F, et al. Flow fields inside stocked fish cages and the near environment[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(3): 031201. doi: 10.1115/1.4027746
    [64]
    BOTTOM II R G, BORAZJANI I, BLEVINS E L, et al. Hydrodynamics of swimming in stingrays: numerical simulations and the role of the leading-edge vortex[J]. Journal of Fluid Mechanics, 2016, 788: 407-443. doi: 10.1017/jfm.2015.702
    [65]
    张 奔, 胡 晓, 杨国党, 等. 基于压力场的草鱼幼鱼巡游动力学研究[J]. 水力发电学报, 2021, 40(6): 79-88. doi: 10.11660/slfdxb.20210608
  • Related Articles

    [1]ZHANG Yuting, CHEN Zhiqiang, LIN Chunxiang, MU Jingli. Application and prospects of fish olfactory neurobehavior in marine ecotoxicology[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(4): 503-513, 523. DOI: 10.12111/j.mes.2024-x-0068
    [2]SUN Ming-yang, ZHANG Xu-zhi, XIA Bin, QU Ke-ming, CUI Zheng-guo, DING Dong-sheng, LI Yu. Distribution and ecological risk assessment of heavy metals in surface seawater of central fishing ports along the coast of the Yellow Sea and Bohai Sea during fishing off season and fishing season[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(6): 857-864. DOI: 10.12111/j.mes.2021-x-0204
    [3]LIU Wei, YU Ze-feng, ZHANG Zhi, LIN Jing, CHENG Hong, FAN Li-jing, WANG Fei-peng, MU Jing-li. Fish assemblage structure and spatio-temporal variation in Qingchuan bay, Ningde, Fujian[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(5): 738-744. DOI: 10.12111/j.mes.2021-x-0216
    [4]QIU Shu-ting, LIU Xi-ming, CHEN Bin, WANG Yan-guo, LIAO Jian-ji, DU Jian-guo. Reef fish diversity and community pattern of the Xisha Islands, South China Sea[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(3): 395-401. DOI: 10.12111/j.mes.20200235
    [5]REN Xiao-zhong, ZHANG Qian, JIANG Heng-zhi, GUI Jin-song, BI Chun-wei. Study on the structure optimization of single-drain square mariculture aquaculture tank based on the flow field uniformity[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(2): 287-293. DOI: 10.12111/j.mes.20190288
    [6]LIU Yong-ye, WANG Yu-fei, QIAO Ya-hua, YANG Yang, CHEN Lu. Study on the thermal tolerance of wide-area fish in the typical coastal NPP sites in China[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2019, 38(4): 528-532. DOI: 10.12111/j.mes20190407
    [7]HUANG Yi, QI Chao-yue, LI Jia, GONG Wei-min, ZHANG Ting-ting, WANG Si-tong, LIU Xiao-xing. Identification of marine oil spills by fisher discriminant based on the diagnostic ratios[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2018, 37(2): 299-303. DOI: 10.12111/j.cnki.mes20180222
    [8]LI Yuan-chao, WU Zhong-jie, CHEN Shi-quan, CAI Ze-fu, LAN Jian-xin, TONG Yu-he, YAO Hai-jun. Discussion of the diversity of the coral reef fish in the shallow reefs along the Yongxing and Qilianyu island[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2017, 36(4): 509-516. DOI: 10.13634/j.cnki.mes20170405
    [9]ZHANG Ling. Research progress on toxicoproteomics in fish: Using marine medaka and zebrafish as models[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(4): 616-621. DOI: 10.13634/j.cnki.mes.2015.04.026
    [10]ZHOU Mei-yu, CHEN Xiao, YANG Sheng-yun. Identification of several fish eggs and larvae by DNA barcoding in Xiamen Water[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(1): 120-125,135. DOI: 10.13634/j.cnki.mes.2015.01.021
  • Cited by

    Periodical cited type(2)

    1. 王仙,吴罡,柳素娉,孙伟,沈璐,赵晨旭,任效忠. 工厂化养殖保温材料和技术研究进展与展望. 水产科学. 2025(03): 503-510 .
    2. 孙伟,柳素娉,吴罡,周寅鑫,任效忠. 鱼类游动机理研究进展. 大连海洋大学学报. 2024(04): 698-707 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (494) PDF downloads (41) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return