• 中文核心期刊
  • 中国科技核心期刊
  • ISSN 1007-6336
  • CN 21-1168/X
SONG Shuang, WANG Zhao-wei, HAN Jian-bo, CHEN Hong, YANG Wen-chao. Progress in international research and application of disposal methods for contaminated dredged materials[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(5): 805-812. DOI: 10.12111/j.mes.20200140
Citation: SONG Shuang, WANG Zhao-wei, HAN Jian-bo, CHEN Hong, YANG Wen-chao. Progress in international research and application of disposal methods for contaminated dredged materials[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(5): 805-812. DOI: 10.12111/j.mes.20200140

Progress in international research and application of disposal methods for contaminated dredged materials

More Information
  • Received Date: May 26, 2020
  • Revised Date: October 13, 2020
  • Available Online: September 15, 2021
  • With the rapid development of coastal economic construction, China's coastal marine environment is affected by extensive human activities, a large amount of pollutants accumulated in dredged materials from some ports, which pose a potential threat to human health and the ecological environment. Traditional disposal methods for dredged materials include marine dumping, filling engineering and landfill. Due to the increasing amount of ocean dumping of dredged materials, relevant standards and specifications in China is still lacking because of immature technical methods, which brings great challenge to the scientific and refined management of dredged materials. In this paper, the research results and experiences of sediment disposal methods at home and abroad in recent years are summarized, aiming to introduce the disposal methods of polluted dredged materials especially contaminated dredged materials, and providing new ideas for the research on disposal methods of dredged materials.

  • [1]
    GB 30980-2014, 海洋倾倒物质评价规范 疏浚物[S].
    [2]
    COUVIDAT J, CHATAIN V, BOUZAHZAH H, et al. Characterization of how contaminants arise in a dredged marine sediment and analysis of the effect of natural weathering[J]. Science of the Total Environment, 2018, 624: 323-332. doi: 10.1016/j.scitotenv.2017.12.130
    [3]
    黎晓霞, 张珞平, 叶 歆, 等. 疏浚物去污染技术的研究进展[J]. 海洋开发与管理, 2006, 23(6): 125-128.
    [4]
    李幼萌. 国外疏浚物的处理与利用[J]. 水道港口, 2001, 22(3): 146-148.
    [5]
    孙 婷. 珠江口疏浚泥处置方案研究[D]. 青岛: 中国海洋大学, 2012.
    [6]
    AKCIL A, ERUST C, OZDEMIROGLU S, et al. A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes[J]. Journal of Cleaner Production, 2015, 86: 24-36. doi: 10.1016/j.jclepro.2014.08.009
    [7]
    PENG J F, SONG Y H, YUAN P, et al. The remediation of heavy metals contaminated sediment[J]. Journal of Hazardous Materials, 2009, 161(2/3): 633-640.
    [8]
    PENG W H, LI X M, XIAO S T, et al. Review of remediation technologies for sediments contaminated by heavy metals[J]. Journal of Soils and Sediments, 2018, 18(4): 1701-1719. doi: 10.1007/s11368-018-1921-7
    [9]
    MULLIGAN C N, YONG R N, GIBBS B F. An evaluation of technologies for the heavy metal remediation of dredged sediments[J]. Journal of Hazardous Materials, 2001, 85(1/2): 145-163.
    [10]
    ZHENG Z J, LIN M Y, CHIUEH P T, et al. Framework for determining optimal strategy for sustainable remediation of contaminated sediment: a case study in Northern Taiwan[J]. Science of the Total Environment, 2019, 654: 822-831. doi: 10.1016/j.scitotenv.2018.11.152
    [11]
    LEE G F. Comments on US EPA draft "Contaminated Sediment Remediation Guidance for Hazardous Waste Sites" dated November 2002[EB/OL].[2003-03-24]. http://www.gfredlee.com/HazChemSites/HazWasteSed-Comments.pdf.
    [12]
    LIBRALATO G, MINETTO D, LOFRANO G, et al. Toxicity assessment within the application of in situ contaminated sediment remediation technologies: a review[J]. Science of the Total Environment, 2018, 621: 85-94. doi: 10.1016/j.scitotenv.2017.11.229
    [13]
    PARK S J, KANG K, LEE C G, et al. Remediation of metal-contaminated marine sediments using active capping with limestone, steel slag, and activated carbon: a laboratory experiment[J]. Environmental Technology, 2019, 40(26): 3479-3491. doi: 10.1080/09593330.2018.1478886
    [14]
    JOSEFSSON S, SCHAANNING M, SAMUELSSON G S, et al. Capping efficiency of various carbonaceous and mineral materials for in situ remediation of Polychlorinated Dibenzo-p-dioxin and Dibenzofuran contaminated marine sediments: sediment-to-water fluxes and Bioaccumulation in Boxcosm Tests[J]. Environmental Science & Technology, 2012, 46(6): 3343-3351.
    [15]
    ZHU Y Y, TANG W Z, JIN X, et al. Using biochar capping to reduce nitrogen release from sediments in eutrophic lakes[J]. Science of the Total Environment, 2019, 646: 93-104. doi: 10.1016/j.scitotenv.2018.07.277
    [16]
    GU B W, LEE C G, LEE T G, et al. Evaluation of sediment capping with activated carbon and nonwoven fabric mat to interrupt nutrient release from lake sediments[J]. Science of the Total Environment, 2017, 599-600: 413-421. doi: 10.1016/j.scitotenv.2017.04.212
    [17]
    WANG A O, PTACEK C J, BLOWES D W, et al. Application of hardwood biochar as a reactive capping mat to stabilize mercury derived from contaminated floodplain soil and riverbank sediments[J]. Science of the Total Environment, 2019, 652: 549-561. doi: 10.1016/j.scitotenv.2018.10.213
    [18]
    ZHANG S, TIAN K, JIANG S F, et al. Preventing the release of Cu2+ and 4-CP from contaminated sediments by employing a biochar capping treatment[J]. Industrial & Engineering Chemistry Research, 2017, 56(27): 7730-7738.
    [19]
    范英宏. 生物炭原位覆盖对重金属铜的污染控制[J]. 环境工程, 2019, 37(6): 155-159.
    [20]
    KUPRYIANCHYK D, RAKOWSKA M I, REIBLE D, et al. Positioning activated carbon amendment technologies in a novel framework for sediment management[J]. Integrated Environmental Assessment and Management, 2015, 11(2): 221-234. doi: 10.1002/ieam.1606
    [21]
    LU K P, YANG X, GIELEN G, et al. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil[J]. Journal of Environmental Management, 2017, 186: 285-292. doi: 10.1016/j.jenvman.2016.05.068
    [22]
    SILVANI L, VRCHOTOVA B, KASTANEK P, et al. Characterizing biochar as alternative sorbent for oil spill remediation[J]. Scientific Reports, 2017, 7: 43912. doi: 10.1038/srep43912
    [23]
    SILVANI L, DI PALMA P R, RICCARDI C, et al. Use of biochar as alternative sorbent for the active capping of oil contaminated sediments[J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 5241-5249. doi: 10.1016/j.jece.2017.10.004
    [24]
    TANEEZ M, HUREL C, MADY F, et al. Capping of marine sediments with valuable industrial by-products: evaluation of inorganic pollutants immobilization[J]. Environmental Pollution, 2018, 239: 714-721. doi: 10.1016/j.envpol.2018.04.089
    [25]
    HEAD I M. Bioremediation: towards a credible technology[J]. Microbiology, 1998, 144(3): 599-608. doi: 10.1099/00221287-144-3-599
    [26]
    LIU L W, LI W, SONG W P, et al. Remediation techniques for heavy metal-contaminated soils: principles and applicability[J]. Science of the Total Environment, 2018, 633: 206-219. doi: 10.1016/j.scitotenv.2018.03.161
    [27]
    SOWERS K R, MAY H D. In situ treatment of PCBs by anaerobic microbial dechlorination in aquatic sediment: are we there yet?[J]. Current Opinion in Biotechnology, 2013, 24(3): 482-488. doi: 10.1016/j.copbio.2012.10.004
    [28]
    CHANG C Y, CHEN S Y, KLIPKHAYAI P, et al. Bioleaching of heavy metals from harbor sediment using sulfur-oxidizing microflora acclimated from native sediment and exogenous soil[J]. Environmental Science and Pollution Research, 2019, 26(7): 6818-6828. doi: 10.1007/s11356-019-04137-x
    [29]
    FANG D, ZHANG R C, ZHOU L X, et al. A combination of bioleaching and bioprecipitation for deep removal of contaminating metals from dredged sediment[J]. Journal of Hazardous Materials, 2011, 192(1): 226-233.
    [30]
    CORNELISSEN G, SCHAANNING M, GUNNARSSON J S, et al. A large‐scale field trial of thin‐layer capping of PCDD/F‐contaminated sediments: sediment‐to‐water fluxes up to 5 years post‐amendment[J]. Integrated Environmental Assessment and Management, 2016, 12(2): 216-221. doi: 10.1002/ieam.1665
    [31]
    ABEL S, AKKANEN J. A combined field and laboratory study on activated carbon-based thin layer capping in a PCB-contaminated boreal lake[J]. Environmental Science & Technology, 2018, 52(8): 4702-4710.
    [32]
    PAYNE R B, MAY H D, SOWERS K R. Enhanced reductive dechlorination of polychlorinated biphenyl impacted sediment by bioaugmentation with a dehalorespiring bacterium[J]. Environmental Science & Technology, 2011, 45(20): 8772-8779.
    [33]
    KIM J O, CHOI J, LEE S, et al. Evaluation of hydrocyclone and post-treatment technologies for remediation of contaminated dredged sediments[J]. Journal of Environmental Management, 2016, 166: 94-102.
    [34]
    VEETIL D P, MERCIER G, BLAIS J F, et al. Remediation of Contaminated Dredged Sediments Using Physical Separation Techniques[J]. Soil and Sediment Contamination: An International Journal, 2014, 23(8): 932-953. doi: 10.1080/15320383.2014.896860
    [35]
    KRIBI S, RAMAROSON J, NZIHOU A, et al. Laboratory scale study of an industrial phosphate and thermal treatment for polluted dredged sediments[J]. International Journal of Sediment Research, 2012, 27(4): 538-546. doi: 10.1016/S1001-6279(13)60011-6
    [36]
    YIN H B, ZHU J C. In situ remediation of metal contaminated lake sediment using naturally occurring, calcium-rich clay mineral-based low-cost amendment[J]. Chemical Engineering Journal, 2016, 285: 112-120. doi: 10.1016/j.cej.2015.09.108
    [37]
    SILITONGA E, PARK J W, AY LIE H, et al. Experimental research of stabilization of polluted Marine dredged sediments by using Silica Fume[J]. MATEC Web of Conferences, 2017, 138: 01017. doi: 10.1051/matecconf/201713801017
    [38]
    FRICK H, TARDIF S, KANDELER E, et al. Assessment of biochar and zero-valent iron for in-situ remediation of chromated copper arsenate contaminated soil[J]. Science of the Total Environment, 2019, 655: 414-422. doi: 10.1016/j.scitotenv.2018.11.193
    [39]
    TANEEZ M, MARMIER N, HUREL C. Use of neutralized industrial residue to stabilize trace elements (Cu, Cd, Zn, As, Mo, and Cr) in marine dredged sediment from South-East of France[J]. Chemosphere, 2016, 150: 116-122. doi: 10.1016/j.chemosphere.2016.02.014
    [40]
    WEN J, ZENG G M. Chemical and biological assessment of Cd-polluted sediment for land use: the effect of stabilization using chitosan-coated zeolite[J]. Journal of Environmental Management, 2018, 212: 46-53.
    [41]
    SHEN Z T, JIN F, O’CONNOR D, et al. Solidification/stabilization for soil remediation: an old technology with new vitality[J]. Environmental Science & Technology, 2019, 53(20): 11615-11617.
    [42]
    SHIH Y J, SYU S Y, CHEN C W, et al. Assessment of ex-situ chemical washing of heavy metals from estuarine sediments around an industrial harbor in southern Taiwan[J]. Journal of Soils and Sediments, 2019, 19(7): 3108-3122. doi: 10.1007/s11368-019-02321-7
    [43]
    WANG H, LIU T Z, TSANG D C W, et al. Transformation of heavy metal fraction distribution in contaminated river sediment treated by chemical-enhanced washing[J]. Journal of Soils and Sediments, 2017, 17(4): 1208-1218. doi: 10.1007/s11368-016-1631-y
    [44]
    ABUMAIZAR R J, SMITH E H. Heavy metal contaminants removal by soil washing[J]. Journal of Hazardous Materials, 1999, 70(1/2): 71-86.
    [45]
    SONG Y, AMMAMI M T, BENAMAR A, et al. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment[J]. Environmental Science and Pollution Research, 2016, 23(11): 10577-10586. doi: 10.1007/s11356-015-5966-5
    [46]
    KIM K J, KIM D H, YOO J C, et al. Electrokinetic extraction of heavy metals from dredged marine sediment[J]. Separation and Purification Technology, 2011, 79(2): 164-169. doi: 10.1016/j.seppur.2011.02.010
    [47]
    万 辉, 易筱筠, 刘小平, 等. 施加不同电压对河涌底泥中多氯联苯厌氧还原脱氯的影响[J]. 环境工程学报, 2018, 12(2): 581-589.
    [48]
    COLACICCO A, DE GIOANNIS G, MUNTONI A, et al. Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs[J]. Chemosphere, 2010, 81(1): 46-56. doi: 10.1016/j.chemosphere.2010.07.004
    [49]
    FIGUEROA A, CAMESELLE C, GOUVEIA S, et al. Electrokinetic treatment of an agricultural soil contaminated with heavy metals[J]. Journal of Environmental Science and Health, Part A, 2016, 51(9): 691-700. doi: 10.1080/10934529.2016.1170425
    [50]
    张晓辉, 孙洪光, 黄根华, 等. 海洋倾倒前疏浚底泥的去污染技术[J]. 热带海洋学报, 2010, 29(1): 15-19.
    [51]
    TIAN Y, BOULANGÉ-LECOMTE C, BENAMAR A, et al. Application of a crustacean bioassay to evaluate a multi-contaminated (metal, PAH, PCB) harbor sediment before and after electrokinetic remediation using eco-friendly enhancing agents[J]. Science of the Total Environment, 2017, 607-608: 944-953. doi: 10.1016/j.scitotenv.2017.07.094
    [52]
    RAĐENOVIĆ D, KERKEZ Đ, PILIPOVIĆ D T, et al. Long-term application of stabilization/solidification technique on highly contaminated sediments with environment risk assessment[J]. Science of the Total Environment, 2019, 684: 186-195. doi: 10.1016/j.scitotenv.2019.05.351
    [53]
    MAMINDY-PAJANY Y, HUREL C, GERET F, et al. Comparison of mineral-based amendments for ex-situ stabilization of trace elements (As, Cd, Cu, Mo, Ni, Zn) in marine dredged sediments: a pilot-scale experiment[J]. Journal of Hazardous Materials, 2013, 252-253: 213-219. doi: 10.1016/j.jhazmat.2013.03.001
  • Cited by

    Periodical cited type(5)

    1. 胡振,李彦卿,石瑞强,周绪申. 北海海域海洋倾废现状分析与管理建议. 环境生态学. 2024(04): 77-83 .
    2. 葛瑛芳,王丽华,艾丛芳,周晓蓓,李鑫彪. 基于倾倒区淤积分析的多倾倒区容量评估影响研究. 海洋环境科学. 2024(05): 797-805 . 本站查看
    3. 李婷,王振兴,刘伟,汪望明,杨天件,廖岩. 颗粒粒径和含固率对疏浚泥沙絮凝沉降的影响. 环境工程学报. 2023(01): 325-331 .
    4. 吴枫琪,朱志刚,袁军,潘登. 固化淤泥掺建筑垃圾制备免烧砖的研究. 武汉工程大学学报. 2023(03): 337-341+348 .
    5. 麦居喜,刘路明,詹诚. 港口航道工程施工疏浚物处置措施探讨. 西部交通科技. 2023(11): 211-213 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (2393) PDF downloads (44) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return