• 中文核心期刊
  • 中国科技核心期刊
  • ISSN 1007-6336
  • CN 21-1168/X
LIU Hai-xia, WANG Yue-feng, AN Bai-chao, QIAN Jia-hui, QIU Cheng. Study on the variation trend and influencing factors of summer hypoxia off the Yangtze River Estuary[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(3): 341-351. DOI: 10.12111/j.mes.20200081
Citation: LIU Hai-xia, WANG Yue-feng, AN Bai-chao, QIAN Jia-hui, QIU Cheng. Study on the variation trend and influencing factors of summer hypoxia off the Yangtze River Estuary[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(3): 341-351. DOI: 10.12111/j.mes.20200081

Study on the variation trend and influencing factors of summer hypoxia off the Yangtze River Estuary

More Information
  • Received Date: April 01, 2020
  • Revised Date: October 08, 2020
  • Based on the monitoring data of summer hypoxia off the Yangtze River Estuary from 2010 to 2017, this paper analyzed the interannual variation characteristics of the location and range of summer hypoxia off the Yangtze River Estuary, and discussed influencing factors of the annual variation of hypoxia. The results showed that the hypoxia existed almost every year in the sea area adjacent to the location of 123°E, 31°N off the Yangtze River Estuary. The hypoxia would reach the sea area north of 32°N off the Yangtze River Estuary when the hypoxia had gotten severely; the changes of the hypoxia range off the Yangtze River Estuary over the years were greatly affected by the Taiwan Warm Current, when the Taiwan Warm Current was strong, the hypoxia area was larger and its location was farther north off the Yangtze River Estuary; the changes of the hydrodynamic in the hypoxia area caused by the Taiwan Warm Current. The low dissolved oxygen and high nutrient characteristics of the sub-surface water of the Kuroshio in the bottom of the Taiwan Warm Current were important factors affecting the reoxygenation and oxygen consumption in the bottom water of the hypoxia area, the intensity of the Taiwan Warm Current and the characteristics of the subsurface water of the bottom Kuroshio played important roles in the interannual variation of summer hypoxia off the Yangtze River Estuary.

  • [1]
    DIAZ R J, ROSENBERG R. Marine benthic hypoxia - review of ecological effects and behavioral responses on macrofauna[J]. Oceanography and Marine Biology, Annual Review, 1995, 33: 245-303.
    [2]
    RABALAIS N N, DIAZ R J, LEVIN L A, et al. Dynamics and distribution of natural and human-caused hypoxia[J]. Biogeosciences, 2010, 7(2): 585-619. doi: 10.5194/bg-7-585-2010
    [3]
    ZHU Z, WU H, LIU S, et al. Hypoxia off the Changjiang (Yangtze River) estuary and in the adjacent East China Sea: Quantitative approaches to estimating the tidal impact and nutrient regeneration[J]. Marine Pollution Bulletin, 2017, 125(1): 103-114.
    [4]
    DIAZ R J, ROSENBERG R. Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008, 321: 926-929. doi: 10.1126/science.1156401
    [5]
    李道季, 张 经, 黄大吉, 等. 长江口外氧的亏损[J]. 中国科学(D辑), 2002, 32(8): 686-694. doi: 10.3321/j.issn:1006-9267.2002.08.009
    [6]
    刘海霞, 李道季, 高 磊, 等. 长江口夏季低氧区形成及加剧的成因分析[J]. 海洋科学进展, 2012, 30(2): 186-197. doi: 10.3969/j.issn.1671-6647.2012.02.004
    [7]
    罗 琳, 李适宇, 厉红梅. 夏季珠江口水域溶解氧的特征及影响因素[J]. 中山大学学报(自然科学版), 2005, 44(6): 118-122. doi: 10.3321/j.issn:0529-6579.2005.06.031
    [8]
    QIAN W, GAN J, LIU J, et L. Current status of emerging hypoxia in a eutrophic estuary: The lower reach of the Pearl River Estuary, China[J]. Estuarine, Coastal and Shelf Science, 2018, . doi: 10.1016/j.ecss.2018.03.004
    [9]
    张 华, 李艳芳, 唐 诚, 等. 渤海底层低氧区的空间特征与形成机制[J]. 科学通报, 2016, 61(14): 1612-1620.
    [10]
    ZHAI W D, ZHAO H D, SU J L, et al. Emergence of summer hypoxia and concurrent carbonate mineral suppression in the central Bohai Sea, China[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124: 1-18. doi: 10.1002/jgrg.21306
    [11]
    LI X, BIANCHI T S, YANG Z, et al. Historical trends of hypoxia in Changjiang River estuary: Applications of chemical biomarkers and microfossils[J]. Journal of Marine System, 2011, 86(3–4): 57-68. doi: 10.1016/j.jmarsys.2011.02.003
    [12]
    CHEN J, NI X, LIU M, et al. Monitoring the occurrence of seasonal low-oxygen events off the Changjiang Estuary through integration of remote sensing, buoy observations, and modeling[J]. Journal of Geophysical Research: Oceans, 2014, 119(8): 5311-5322. doi: 10.1002/2014JC010333
    [13]
    ZHANG H, ZHAO L, SUN Y, et al. Contribution of sediment oxygen demand to hypoxia development off the Changjiang Estuary[J]. Estuarine, Coastal and Shelf Science, 2017, 192: 149-157. doi: 10.1016/j.ecss.2017.05.006
    [14]
    CHI L, SONG X, YUAN Y, et al. Distribution and key influential factors of dissolved oxygen off the Changjiang River Estuary (CRE) and its adjacent waters in China[J]. Marine Pollution Bulletin, 2017, 125(1): 440-450.
    [15]
    WANG H, DAI M, LIU J, et al. Eutrophication-Driven Hypoxia in the East China Sea off the Changjiang Estuary[J]. Environmental Science & Technology, 2016, 50(5): 2255-2263.
    [16]
    LI Z, SONG S, LI C, et al. The sinking of the phytoplankton community and its contribution to seasonal hypoxia in the Changjiang (Yangtze River) estuary and its adjacent waters[J]. Estuarine, Coastal and Shelf Science, 2018, 208: 170-179. doi: 10.1016/j.ecss.2018.05.007
    [17]
    WANG B, CHEN J, JIN H, et al. Inorganic carbon parameters responding to summer hypoxia outside the Changjiang Estuary and the related implications[J]. Journal of Ocean University of China, 2013, 12(4): 568-576. doi: 10.1007/s11802-013-2239-0
    [18]
    WEI H, HE Y C, LI Q J, et al. Summer hypoxia adjacent to the Changjiang Estuary[J]. Journal of Marine Systems, 2007, 67: 292-303. doi: 10.1016/j.jmarsys.2006.04.014
    [19]
    CHEN X, SHEN Z, LI Y, et al. Physical controls of hypoxia in waters adjacent to the Yangtze Estuary: A numerical modeling study[J]. Marine Pollution Bulletin, 2015, 97(1–2): 349-364. doi: 10.1016/j.marpolbul.2015.05.067
    [20]
    ZHOU F, CHAI F, HUANG D, et al. Investigation of hypoxia off the Changjiang Estuary using a coupled model of ROMS-CoSiNE[J]. Progress in Oceanography, 2017, 159: 237-254. doi: 10.1016/j.pocean.2017.10.008
    [21]
    韦钦胜, 王保栋, 于志刚, 等. 夏季长江口外缺氧频发的机制及酸化问题初探[J]. 中国科学: 地球科学, 2017, 47(1): 114-134.
    [22]
    LU W, XIANG X, YANG L, et al. The temporal-spatial distribution and changes of dissolved oxygen in the Changjiang Estuary and its adjacent waters for the last 50 a[J]. Acta Oceanologica Sinica, 2017, 36(5): 90-98. doi: 10.1007/s13131-017-1063-6
    [23]
    LI X, YU Z, SONG X, et al. The Seasonal Characteristics of Dissolved Oxygen Distribution and Hypoxia in the Changjiang Estuary[J]. JOURNAL OF COASTAL RESEARCH, 2011, 27(6A): 52-62.
    [24]
    潘玉球, 浅沼市男, 甲斐源太郎, 等. 台湾以北陆架环流的季节特征[C]//苏纪兰. 黑潮调查研究论文选(五). 北京: 海洋出版社, 1993: 201-213.
    [25]
    潘玉球, 苏纪兰, 苏玉芬. 东海南部水文的季节特性[C]//苏纪兰. 黑潮调查研究论文选(五). 北京: 海洋出版社, 1993: 186-200.
    [26]
    GUO Y, RONG Z, LI B, et al. Physical processes causing the formation of hypoxia off the Changjiang estuary after Typhoon Chan-hom, 2015[J]. Journal of Oceanology and Limnology, 2019, 37(1): 1-17. doi: 10.1007/s00343-019-7336-5
    [27]
    QIAN W, DAI M, XU M, et al. Non-local drivers of the summer hypoxia in the East China Sea off the Changjiang Estuary[J]. Estuarine, Coastal and Shelf Science, 2017, 198: 393-399. doi: 10.1016/j.ecss.2016.08.032
    [28]
    ZHANG J, LIU S M, REN J L, et al. Nutrient gradients from the eutrophic Changjiang (Yangtze River) Estuary to the oligotrophic Kuroshio waters and re-evaluation of budgets for the East China Sea Shelf[J]. Progress in Oceanography, 2007, 74(4): 449-478. doi: 10.1016/j.pocean.2007.04.019
    [29]
    CHEN C T A. The Kuroshio intermediate water is the major source of nutrients on the East China Sea continental shelf[J]. Oceanologica Acta, 1996, 19: 523-527.
    [30]
    FAN W, SONG J. A numerical study of the seasonal variations of nutrients in the Changjiang River estuary and its adjacent sea area[J]. Ecological Modelling, 2014, 291: 69-81. doi: 10.1016/j.ecolmodel.2014.07.026
    [31]
    赵保仁, 仁广法, 曹德明, 等. 长江口上升流海区的生态环境特征[J]. 海洋与湖沼, 2001, 32(3): 327-333. doi: 10.3321/j.issn:0029-814X.2001.03.014
    [32]
    TSENG Y F, LIN J, DAI M, et al. Joint effect of freshwater plume and coastal upwelling on phytoplankton growth off the Changjiang River[J]. Biogeosciences, 2014, 11(2): 409-423. doi: 10.5194/bg-11-409-2014
    [33]
    CHANG Y L, OEY L Y. Interannual and seasonal variations of Kuroshio transport east of Taiwan inferred from 29 years of tide-gauge data[J]. Geophysical Research Letters, 2011, 38: L08603.
    [34]
    许灵静, 齐继峰, 尹宝树, 等. 台湾以东黑潮的低频变化及机制研究[J]. 海洋学报, 2017, 39(9): 15-25.
    [35]
    LI J, WEI H, ZHANG Z, et al. A modelling study of inter-annual variation of Kuroshio intrusion on the shelf of East China Sea[J]. Journal of Ocean University of China, 2013, 12(4): 537-548. doi: 10.1007/s11802-013-2203-z
    [36]
    ZHOU P, SONG X, YUAN Y, et al. Water mass analysis of the East China Sea and interannual variation of Kuroshio Subsurface Water intrusion through an Optimum Multiparameter method[J]. Journal of Geophysical Research: Oceans, 2018, 123: 3723-3738. doi: 10.1029/2018JC013882
  • Related Articles

    [1]CHEN Yiming, SUN Deyong, WANG Shengqiang, HE Miao, CHEN Ying, ZHANG Hailong, ZHANG Yue. Spatiotemporal variations of nutrients in Jiangsu coastal waters based on GOCI observations[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(5): 766-775. DOI: 10.12111/j.mes.2023-x-0328
    [2]ZHANG Shu-kun, MING Yue, GAO Lei. Distributions of POC and DOC in the Changjiang (Yangtze) River Estuary in response to the extreme flood occurring in the river basin in summer of 2020[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(5): 653-659. DOI: 10.12111/j.mes.2021-x-0221
    [3]TIAN Li-na, YANG Jin-sheng, ZHOU You-lin, CAO Rui, ZHANG Meng, PAN Yu-ying. The primary study on antioxidase activities of Boleophthalmus pectinirostris exposed to crude oil in intertidal zone[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(1): 135-141. DOI: 10.12111/j.mes.20200170
    [4]LIU Hong-yan, LI Kai-qiang, KANG Bo-lun, QIN Hai-hua. Fe(Ⅲ) reduction and hydrogen production by Fe (Ⅲ)-reducing bacterium Enterococcus sp. ZQ21[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(3): 379-383. DOI: 10.12111/j.mes.20200119
    [5]WEI Hai-feng, TIAN Shan-chuan, ZHAO Xiao-yi, LIU Chang-fa, ZHOU Ji-ti. Study on the bioaccumulation kinetics of three PAHs by Apostichopus japonicus[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2019, 38(5): 663-668. DOI: 10.12111/j.mes20190503
    [6]CHENG Tian-yu, GAO Guo-ping, HU Deng-hui, HUANG Ju, ZHANG Chun-ling. Analysis on characteristics of CO2 fluxes across the air-sea interface of the Yangtze Estuary and adjacent sea in late winter 2016[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2018, 37(2): 264-273. DOI: 10.12111/j.cnki.mes20180217
    [7]GU Jie, LI Zheng-yao, MAO Xiao-dan, HU Cheng-fei, KUANG Cui-ping, ZHANG Wan-lei. Study of COD environmental capacity in coastal waters of Beidaihe in summer[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2017, 36(5): 682-687. DOI: 10.13634/j.cnki.mes20170507
    [8]QIAO Ling, ZHEN Yu, MI Tie-Zhu. Review of the brown tides caused by Aureococcus anophagefferens[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(3): 473-480. DOI: 10.13634/j.cnki.mes20160324
    [9]LI Lei, JIANG Mei, SHEN Xin-qiang, WANG Yun-long, WU Qing-yuan, NIU Jun-xiang, XU Gao-peng. Effects of Cr(VI) on the activities of SOD,concentration of MDA and MTs inhepatopancreas and gilltsissue of Portunus trituberculatus[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(6): 838-843. DOI: 10.13634/j.cnki.mes.2015.06.007
    [10]YUAN Lei, ZHANG Chun-chao, LV Yan-ru. Correlation analysis between TOC and COD in Pearl River Estuary[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(5): 700-705. DOI: 10.13634/j.cnki.mes.2015.05.010
  • Cited by

    Periodical cited type(3)

    1. Xiao Ma,Qicheng Meng,Dewang Li,Yuanli Zhu,Xiaobo Ni,Dingyong Zeng,Di Tian,Ting Huang,Zhihao Jiang,Haiyan Jin,Feng Zhou. Coastal hypoxia response to the coupling of catastrophic flood, extreme marine heatwave and typhoon:a case study off the Changjiang River Estuary in summer 2020. Acta Oceanologica Sinica. 2024(06): 107-118 .
    2. 苏海,娄保锋,邓世江,黄波,欧阳雪姣. 长江口入海总氮通量变化及区域来源特征. 长江流域资源与环境. 2024(09): 2018-2027 .
    3. 曹婧,王颖,刘欣禹,周艳荣,刘云龙,袁媛. 2020年夏季渤海中部底层水体低氧现象成因分析. 海洋环境科学. 2023(02): 254-261 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (2562) PDF downloads (47) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return