Citation: | ZHANG Shuai, LI Xiao-kang, LIU Zhen-zuo, YAO Ling-yun, WANG Zheng, XU Yan. Analysis of microbial community of typical beach sediments in Qingdao city using high throughput sequencing[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(3): 417-424, 456. DOI: 10.12111/j.mes.20200001 |
In order to understand the composition and difference of microbial community structure in the environment of typical beach sediments in Qingdao, sediments in five classical beaches of Qingdao have been collected and the microbial community structure has been studied using high-throughput sequencing technique. The results showed that Proteobacteria were dominant in the sediment of five beaches. The PCoA analysis indicated that the microbial community composition was significantly different (p<0.05) between five sediments. By comparing with the pathogenic bacterial database, 13 genera of potential pathogenic bacteria were detected in the sediment environment of the five beaches, including 17 species of pathogenic bacteria. Among them, the relative abundance of vibrio is higher than that of other potential pathogenic bacteria, and the relative abundance is the highest in the third and golden beaches, which may cause certain environmental risks to the marine environmental ecology and marine farming.
[1] |
郑天凌, 田 蕴, 苏建强, 等. 海洋微生物研究的回顾与展望[J]. 厦门大学学报: 自然科学版, 2006, 45(S2): 150-157.
|
[2] |
李 祎, 郑 伟, 郑天凌. 海洋微生物多样性及其分子生态学研究进展[J]. 微生物学通报, 2013, 40(4): 655-668.
|
[3] |
DONG C, BAI X, SHENG H, et al. Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean[J]. Biogeosciences, 2015, 12(7): 2163-2177. doi: 10.5194/bg-12-2163-2015
|
[4] |
董 逸. 我国黄、东海典型海域微生物群落结构及其与环境变化的关系[D]. 青岛: 中国科学院研究生院(海洋研究所), 2013.
|
[5] |
MAHMOUDI N, ROBESON II M S, CASTRO H F, et al. Microbial community composition and diversity in Caspian Sea sediments[J]. FEMS Microbiology Ecology, 2015, 91(1): 1-11.
|
[6] |
白 洁, 李海艳, 张 健, 等. 黄海西北部沉积物中细菌群落16S rDNA多样性解析[J]. 中国环境科学, 2009, 29(12): 1277-1284. doi: 10.3321/j.issn:1000-6923.2009.12.009
|
[7] |
TOLLI J D, SIEVERT S M, TAYLOR C D. Unexpected diversity of bacteria capable of carbon monoxide oxidation in a coastal marine environment, and contribution of the Roseobacter-associated clade to total CO oxidation[J]. Applied and Environmental Microbiology, 2006, 72(3): 1966-1973. doi: 10.1128/AEM.72.3.1966-1973.2006
|
[8] |
ALVAREZ L A, EXTON D A, TIMMIS K N, et al. Characterization of marine isoprene-degrading communities[J]. Environmental Microbiology, 2009, 11(12): 3280-3291. doi: 10.1111/j.1462-2920.2009.02069.x
|
[9] |
HOLMSTRÖM C, KJELLEBERG S. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents[J]. FEMS Microbiology Ecology, 1999, 30(4): 285-293. doi: 10.1111/j.1574-6941.1999.tb00656.x
|
[10] |
DU Z J, WANG Z J, ZHAO J X, et al. Woeseia Oceani gen. nov., sp. nov., a chemoheterotrophic member of the order Chromatiales, and proposal of Woeseiaceae fam. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 66(1): 107-112.
|
[11] |
周海平, 李卓佳, 杨莺莺, 等. 乳酸杆菌LH对几种水产养殖病原弧菌的抑制作用[J]. 台湾海峡, 2006, 25(3): 388-395.
|
[12] |
郭建丽, 王 玥, 李江宇, 等. 大连重要海水增养殖区粪便污染指示菌和弧菌的时空分布[J]. 海洋环境科学, 2017, 36(6): 813-819.
|
[13] |
WISPLINGHOFF H, PAULUS T, LUGENHEIM M, et al. Nosocomial bloodstream infections due to Acinetobacter baumannii, Acinetobacter pittii and Acinetobacter nosocomialis in the United States[J]. Journal of Infection, 2012, 64(3): 282-290. doi: 10.1016/j.jinf.2011.12.008
|
[14] |
WANG X H, CHEN T, YU R J, et al. Acinetobacter pittii and Acinetobacter nosocomialis among clinical isolates of the Acinetobacter calcoaceticus-baumannii complex in Sichuan, China[J]. Diagnostic Microbiology and Infectious Disease, 2013, 76(3): 392-395. doi: 10.1016/j.diagmicrobio.2013.03.020
|
[15] |
HALLAM S J, MINCER T J, SCHLEPER C, et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota[J]. PLoS Biology, 2006, 4(4): e95. doi: 10.1371/journal.pbio.0040095
|
[16] |
郑泽军, 李永君, 魏晓娜, 等. PCR-微阵列法检测沿岸海水致病性创伤弧菌及危害评估[J]. 海洋环境科学, 2009, 28(2): 211-214. doi: 10.3969/j.issn.1007-6336.2009.02.023
|
[17] |
邓德耀, 袁文丽, 刘春林. OXA-51型β内酰胺酶的研究进展[J]. 中国感染与化疗杂志, 2014, 14(5): 451-454. doi: 10.3969/j.issn.1009-7708.2014.05.024
|
[18] |
毕水莲, 孟赫诚. 致病性弓形杆菌属生物学特性及诊断研究进展[J]. 现代食品科技, 2013, 29(1): 211-214.
|
[19] |
张红伟, 董文龙, 王 羽, 等. 不同来源沙雷氏菌的分离鉴定及其耐药性分析[J]. 中国兽医科学, 2016, 46(5): 616-622.
|
[20] |
TZOUVELEKIS L S, MARKOGIANNAKIS A, PSICHOGIOU M, et al. Carbapenemases in Klebsiella pneumoniae and Other Enterobacteriaceae: an Evolving Crisis of Global Dimensions[J]. Clinical Microbiology Reviews, 2012, 25(4): 682-707. doi: 10.1128/CMR.05035-11
|
[21] |
徐爱玲, 牛成洁, 宋志文, 等. 城市尾水排海过程中微生物及主要致病菌扩散规律[J]. 环境科学, 2018, 39(3): 1365-1378.
|
[22] |
GLASER P, RUSNIOK C, BUCHRIESER C, et al. Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease[J]. Molecular Microbiology, 2002, 45(6): 1499-1513. doi: 10.1046/j.1365-2958.2002.03126.x
|
[23] |
SCOTT R M. Bacterial endocarditis due to Neisseria flava[J]. Journal of Pediatrics, 1971, 78(4): 673-675. doi: 10.1016/S0022-3476(71)80472-9
|
[24] |
BLACK C T, KUPFERSCHMID J P, WEST K W, et al. Haemophilus parainfluenzae infections in children, with the report of a unique case[J]. Reviews of Infectious Diseases, 1988, 10(2): 342-346. doi: 10.1093/clinids/10.2.342
|
[25] |
RYAN M P, PEMBROKE J T, ADLEY C C. Ralstonia pickettii: a persistent Gram-negative nosocomial infectious organism[J]. Journal of Hospital Infection, 2006, 62(3): 278-284. doi: 10.1016/j.jhin.2005.08.015
|
[26] |
赵 莎, 张春鑫, 苏 洁, 等. 北极新奥尔松地区粪土中大肠杆菌和肠球菌的分布及耐药性分析[J]. 海洋环境科学, 2017, 36(2): 261-265.
|
[27] |
陈 波, 邓正泊. 黄杆菌属医院感染及耐药性分析[J]. 检验医学与临床, 2008, 5(5): 261-262. doi: 10.3969/j.issn.1672-9455.2008.05.003
|