Citation: | REN Xiao-zhong, XUE Bo-ru, JIANG Heng-zhi, YU Lin-ping, XU Tiao-jian, MA Zhen, SHI Xian-ying. Numerical study on the influence of double-inlet pipes system for single-drain rectangular arc angle aquaculture tank on hydrodynamic characteristics[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(1): 50-56. DOI: 10.12111/j.mes.20190234 |
In order to research the influence on the hydrodynamic characteristics of single-drain marine aquaculture tank with different double-inlet pipes distances, especially the velocity distribution of the bottom and near discharge outlets. The RNG k-ε turbulence model was applied to simulation the flow field in rectangular arc angle aquaculture tank , the computational fluid dynamics study is performed to analyze the impact of different layout positions under double-inlet pipes structure conditions on the flow field of the tank, and the fluid dynamics characteristics variables were adopted to analyze the complex the flow field in the near of sewage outlet. The results indicate that the position of the inlet pipe in the double-inlet pipe structure has a significant influence on the velocity distribution at the bottom of the tank; the double-inlet pipes at the arc angle is conducive to improve the hydrodynamic characteristics at the bottom of the tank.
[1] |
余粮红, 郑 珊, 高 强. 国外海水养殖生态经济系统协调模式及其对中国的启示[J]. 世界农业, 2018, (7): 112-120.
|
[2] |
刘 鹰, 刘宝良. 我国海水工业化养殖面临的机遇和挑战[J]. 渔业现代化, 2012, 39(6): 1-4, 9. doi: 10.3969/j.issn.1007-9580.2012.06.001
|
[3] |
唐茹霞, 史 策, 刘 鹰. 循环水养殖系统管理运行存在主要问题调查分析[J]. 广东海洋大学学报, 2018, 38(1): 100-106. doi: 10.3969/j.issn.1673-9159.2018.01.014
|
[4] |
OCA J, MASALÓ I, REIG L. Comparative analysis of flow patterns in aquaculture rectangular tanks with different water inlet characteristics[J]. Aquacultural Engineering, 2004, 31(3/4): 221-236.
|
[5] |
DAVIDSON J, SUMMERFELT S. Solids flushing, mixing, and water velocity profiles within large (10 m3 and 150 m3) circular ‘Cornell-type’ dual-drain tanks[J]. Aquacultural Engineering, 2004, 32(1): 245-271. doi: 10.1016/j.aquaeng.2004.03.009
|
[6] |
VENEGAS P A, NARVÁEZ A L, ARRIAGADA A E, et al. Hydrodynamic effects of use of eductors (Jet-Mixing Eductor) for water inlet on circular tank fish culture[J]. Aquacultural Engineering, 2014, 59: 13-22. doi: 10.1016/j.aquaeng.2013.12.001
|
[7] |
徐 皓. 水产养殖设施与深水养殖平台工程发展战略[J]. 中国工程科学, 2016, 18(3): 37-42. doi: 10.3969/j.issn.1009-1742.2016.03.007
|
[8] |
张明亮. 近海及河流环境水动力数值模拟方法与应用[M]. 北京: 科学出版社, 2015.
|
[9] |
LIU Y, LIU B L, LEI J L, et al. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems[J]. Chinese Journal of Oceanology and Limnology, 2017, 35(4): 912-920. doi: 10.1007/s00343-017-6051-3
|
[10] |
孙 赟, 林亚玲, 刘兴静, 等. 涡轮反应器气固两相流动反应CFD模型数值模拟[J]. 农业机械学报, 2013, 44(8): 195-201, 212. doi: 10.6041/j.issn.1000-1298.2013.08.033
|
[11] |
喻黎明, 徐 洲, 杨具瑞, 等. 基于CFD-DEM耦合的网式过滤器水沙运动数值模拟[J]. 农业机械学报, 2018, 49(3): 303-308. doi: 10.6041/j.issn.1000-1298.2018.03.036
|
[12] |
杨 宇, 严忠民, 乔 晔. 河流鱼类栖息地水力学条件表征与评述[J]. 河海大学学报: 自然科学版, 2007, 35(2): 125-130.
|
[13] |
TVINNEREIM K, SKYBAKMOEN S. Water exchange and self-cleaning in fish-rearing tanks[M]//DE PAUW N, JASPERS E, ACKEFORS H, et al. Aquaculture: A Biotechnology in Progress, Volume 2. Bredene: European Aquaculture Society, 1989.
|
[14] |
OCA J, MASALÓ I. Design criteria for rotating flow cells in rectangular aquaculture tanks[J]. Aquacultural Engineering, 2007, 36(1): 36-44. doi: 10.1016/j.aquaeng.2006.06.001
|
[15] |
MASALÓ I, OCA J. Influence of fish swimming on the flow pattern of circular tanks[J]. Aquacultural Engineering, 2016, 74: 84-95. doi: 10.1016/j.aquaeng.2016.07.001
|
[16] |
OCA J, MASALO I. Flow pattern in aquaculture circular tanks: influence of flow rate, water depth, and water inlet & outlet features[J]. Aquacultural Engineering, 2013, 52: 65-72. doi: 10.1016/j.aquaeng.2012.09.002
|
[17] |
湛含辉. 二次流现象及其初步研究[J]. 株洲工学院学报, 2001, 15(3): 27-29.
|
[1] | WANG Xuanzhi, ZHANG Meiling, LIU Changgen, XU Xiaofu, XU Peng. Hydrodynamic condition and water exchange characteristics of Maniao Bay, Hainan[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(1): 74-84. DOI: 10.12111/j.mes.2023-x-0189 |
[2] | SHI Xian-ying, LI Meng, JIANG Heng-zhi, REN Xiao-zhong, HU Yi-xuan, LIU Hai-bo, BI Chun-wei. Numerical study on effects of length-width ratio parameters on hydrodynamic characteristics of circular Angle mariculture tanks[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(6): 921-929. DOI: 10.12111/j.mes.2021-x-0315 |
[3] | ZHANG Xue-wei, HAN Zhen. Prediction and analysis of Argo temperature data by ConvGRU model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(4): 628-635. DOI: 10.12111/j.mes.20210054 |
[4] | LIU Hong-yan, LI Kai-qiang, KANG Bo-lun, QIN Hai-hua. Fe(Ⅲ) reduction and hydrogen production by Fe (Ⅲ)-reducing bacterium Enterococcus sp. ZQ21[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(3): 379-383. DOI: 10.12111/j.mes.20200119 |
[5] | WANG Shan, LIU Miao, LIU Hong-yan. Characterization of dissimilatory iron reduction and Cr(VI) reduction by Enterobacter sp. L6[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2020, 39(6): 838-843. DOI: 10.12111/j.mes.20190155 |
[6] | WANG Zheng, TENG Jun-hua, CAI Wen-bo, LIU Xu, LIANG Ying-qi. Yellow Sea fog extraction method based on GOCI image[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2018, 37(6): 941-946. DOI: 10.12111/j.mes20180621 |
[7] | LIU Xiao-xing, WEI Qi-gong, WANG Si-tong, FU Chong-yao, HUANG Yi, ZHANG Ting-ting, GONG Wei-min. Study on identification of marine oil spill using logistic regression based on petroleum fluorescence characteristics[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2017, 36(5): 760-764, 773. DOI: 10.13634/j.cnki.mes20170519 |
[8] | YU Xiao-cai, SHANG Xiao-lin, JI Qiu-yi, ZHANG Jian, QI Xin-yang, JIN Xiao-jie. Photocatalytic efficiency of nano-Ce/SnO2 in the treatment of aquaculture wastewater[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(4): 501-506. DOI: 10.13634/j.cnki.mes20160404 |
[9] | ZHANG Qi, LIU Yong-jian, LIU Gui-ze. The preliminary study of single-cell PCR analysis of marine Dinoflagellates[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(4): 611-615. DOI: 10.13634/j.cnki.mes.2015.04.025 |
[10] | HE Tong, YANG Wen-feng, XIE Jian, YU Han-sheng. Distribution characteristics and environmental significance of carbon, nitrogen and phosphorus in core sediments of Daya Bay[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(4): 524-529. DOI: 10.13634/j.cnki.mes.2015.04.009 |
1. |
赵晨旭,吴罡,孙伟,胡伟,任效忠,张俊,王仙. 循环水养殖系统中固体废物输运性能的研究进展. 大连海洋大学学报. 2025(01): 174-184 .
![]() | |
2. |
李瑞鹏,田云臣,李青飞,丛雪琪,秦海晶. 进水流速对圆形循环水养殖池流场特性影响的数值模拟. 渔业科学进展. 2024(03): 55-65 .
![]() | |
3. |
张琛,刘晃,张成林,张帆. 进水方式对矩形养殖舱内流场及适渔性的影响. 南方水产科学. 2024(06): 121-131 .
![]() | |
4. |
任效忠,周寅鑫,车宗龙,刘海波,胡伟,姜恒志. 海水高密度养殖系统流场营造及与鱼类相互影响的研究与展望. 海洋环境科学. 2023(03): 483-492 .
![]() | |
5. |
张俊,高阳,陈聪聪,张宁,刘兴国,曹守启,胡庆松,张铮. 工厂化循环水养殖池水动力学研究进展. 上海海洋大学学报. 2023(05): 903-910 .
![]() | |
6. |
冯德军,黄亨达,张宇笈,陶毅,李德振,胡佳俊,桂福坤,曲晓玉. 养殖密度对圆形循环水养殖池自清洗能力的影响. 农业工程学报. 2023(19): 267-276 .
![]() | |
7. |
张倩,桂劲松,任效忠,薛博茹,毕春伟,刘鹰. 相对弧宽比对双通道方形养殖池的流场优化研究. 南方水产科学. 2022(04): 119-125 .
![]() | |
8. |
胡艺萱,张倩,任效忠,毕春伟,刘鹰. 直壁双管结构射流角度对方形圆弧角养殖池流场的影响研究. 渔业现代化. 2021(03): 36-43 .
![]() | |
9. |
薛博茹,李永锋,胡艺萱,任效忠,赵云鹏,毕春伟. 基于CFD的进水管布设位置对沉降式固体颗粒排污影响的数值模拟. 大连海洋大学学报. 2021(04): 620-628 .
![]() | |
10. |
刘海波,任效忠,张倩,毕春伟. 循环水养殖池内鱼类运动数值模型的建立——以许氏平鲉为例. 大连海洋大学学报. 2021(06): 995-1002 .
![]() | |
11. |
胡佳俊,朱放,姚榕,桂福坤,刘博,张泽坤,冯德军. 基于STAR-CCM+的圆形循环水养殖池进水管布设位置优化. 农业工程学报. 2021(21): 244-251 .
![]() | |
12. |
薛博茹,任效忠,胡艺萱,毕春伟. 矩形圆弧角养殖池系统固液两相流数值模型的构建与进径比影响研究. 浙江海洋大学学报(自然科学版). 2021(05): 454-462 .
![]() |