Citation: | HE Qi, ZHA Cheng, SONG Wei, QI Fu-ming, HAO Zeng-zhou, HUANG Dong-mei. Sea surface temperature prediction algorithm based on STL model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2020, 39(6): 918-925. DOI: 10.12111/j.mes.20190232 |
Sea surface temperature is one of the important parameters in marine scientific research, and effective prediction of sea surface temperature is of great significance for marine disaster warning, marine economy and marine ecological environment. Aiming at the characteristics of periodicity, persistence, non-stationarity and non-linearity of sea surface temperature, firstly, the original sea surface temperature series is decomposed into periodic items, trend items and residual items by using the Seasonal-Trend decomposition procedure based on Loess to mine the potential information of sea surface temperature and remove the random noise in the sequence. Combining the advantages of the long short-term memory network model, a neural network is model to predict the sea surface temperature in the next five days. Comparing with the prediction effects of other methods, the experimental results show that the proposed method has better prediction accuracy when predicting sea surface temperature and can effectively predict sea surface temperature.
[1] |
肖 林, 史 剑, 蒋国荣, 等. 台风背景下海浪对海表流场和海表温度的影响[J]. 海洋通报, 2018, 37(4): 396-403. doi: 10.11840/j.issn.1001-6392.2018.04.005
|
[2] |
MENDOZA V M, VILLANUEVA E E, ADEM J. Numerical experiments on the prediction of sea surface temperature anomalies in the Gulf of Mexico[J]. Journal of Marine Systems, 1997, 13(1/2/3/4): 83-99.
|
[3] |
REPELLI C A, NOBRE P. Statistical prediction of sea-surface temperature over the tropical Atlantic[J]. International Journal of Climatology, 2004, 24(1): 45-55. doi: 10.1002/joc.982
|
[4] |
ZAMBON D, GRATTAROLA D, LIVI L, et al. Autoregressive models for sequences of graphs[C] //2019 International Joint Conference on Neural Networks. Budapest: IEEE, 2019.
|
[5] |
ALBARRACIN O Y E, ALENCAR A P, LEE HO L. Generalized autoregressive and moving average models: multicollinearity, interpretation and a new modified model[J]. Journal of Statistical Computation and Simulation, 2019, 89(10): 1819-1840. doi: 10.1080/00949655.2019.1599892
|
[6] |
BAPTISTA M, SANKARARAMAN S, DE MEDEIROS I P, et al. Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling[J]. Computers & Industrial Engineering, 2018, 115: 41-53.
|
[7] |
VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer, 1995: 988–999.
|
[8] |
LINS I D, ARAUJO M, MOURA M D C, et al. Prediction of sea surface temperature in the tropical Atlantic by support vector machines[J]. Computational Statistics & Data Analysis, 2013, 61: 187-198.
|
[9] |
王甜甜, 刘 强. 基于BAS-BP模型的风暴潮灾害损失预测[J]. 海洋环境科学, 2018, 37(3): 457-463. doi: 10.12111/j.cnki.mes20180323
|
[10] |
GRAVES A, MOHAMED A R, HINTON G. Speech recognition with deep recurrent neural networks[C] //Proceedings of 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver: IEEE, 2013: 38.
|
[11] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
|
[12] |
DEY R, SALEMT F M. Gate-variants of Gated Recurrent Unit (GRU) neural networks[C] //Proceedings of the IEEE 60th International Midwest Symposium on Circuits and Systems. Boston: IEEE, 2017.
|
[13] |
ZHANG Q, WANG H, DONG J Y, et al. Prediction of sea surface temperature using long short-term memory[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1745-1749. doi: 10.1109/LGRS.2017.2733548
|
[14] |
CLEVELAND W S, DEVLIN S J. Locally Weighted regression: an approach to regression analysis by local fitting[J]. Journal of the American Statistical Association, 1988, 83(403): 596-610. doi: 10.1080/01621459.1988.10478639
|
[15] |
ROJO J, RIVERO R, ROMERO-MORTE J, et al. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing[J]. International Journal of Biometeorology, 2017, 61(2): 335-348. doi: 10.1007/s00484-016-1215-y
|
[16] |
CRISTINA S, CORDEIRO C, LAVENDER S, et al. MERIS phytoplankton time series products from the SW Iberian peninsula (Sagres) using seasonal-trend decomposition based on loess[J]. Remote Sensing, 2016, 8(6): 449. doi: 10.3390/rs8060449
|
[17] |
GARCÍA-MOZO H, OTEROS J A, GALÁN C. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain[J]. Science of the Total Environment, 2016, 548/549: 221-228. doi: 10.1016/j.scitotenv.2016.01.005
|
[18] |
CHEN G Y, CHEN P F, SHI Y J, et al. Rethinking the usage of batch normalization and dropout in the training of deep neural networks[J]. arXiv preprint arXiv: 1905.05928, 2019.
|
[19] |
AGARWAL R, BURRUS C. Fast one-dimensional digital convolution by multidimensional techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1974, 22(1): 1-10. doi: 10.1109/TASSP.1974.1162532
|
[20] |
SHI W W, GONG Y H, TAO X Y, et al. Fine-grained image classification using modified DCNNs trained by cascaded softmax and generalized large-margin losses[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 683-694. doi: 10.1109/TNNLS.2018.2852721
|
[21] |
HARA K, SAITO D, SHOUNO H. Analysis of function of rectified linear unit used in deep learning[C] //Proceedings of 2015 International Joint Conference on Neural Networks. Killarney: IEEE, 2015.
|
[22] |
SCHWING A G, URTASUN R. Fully connected deep structured networks[J]. arXiv preprint arXiv: 1503.02351, 2015.
|
[1] | ZHOU Guoliang, ZHOU Feng. Sea surface temperature prediction method based on an IWOA optimized Res-BiGRU deep learning model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(5): 806-816. DOI: 10.12111/j.mes.2023-x-0126 |
[2] | WANG Lina, QI Zhiyuan, ZHANG Hongchun, DONG Changming. Prediction of significant wave height based on CNN-STLSTM-CNN model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(3): 417-429. DOI: 10.12111/j.mes.2023-x-0127 |
[3] | YANG Leqing, WANG Lina, ZHANG Hongchun, DONG Changming. Combining forecasting model for sea surface temperature in the South China Sea based on STL[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(1): 109-118. DOI: 10.12111/j.mes.2023-x-0167 |
[4] | DU Jiahao, NIE Jie, YE Min, SONG Derui, GAO Zhen, WEI Zhiqiang. A deep neural networks prediction model for sea surface temperature based on global cross-scale spatial-temporal attention[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(6): 944-954. DOI: 10.12111/j.mes.2023-x-0048 |
[5] | ZHANG Xue-wei, HAN Zhen. Prediction and analysis of Argo temperature data by ConvGRU model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2022, 41(4): 628-635. DOI: 10.12111/j.mes.20210054 |
[6] | XU Yang-feng, LI Lian-wei, XUE Cun-jin, YUE Zeng-you, LIU Jing-yi. Sea surface temperature consistency analysis based on AVHRR and MODIS[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(1): 122-132. DOI: 10.12111/j.mes.20190294 |
[7] | QIAO Ling, ZHEN Yu, MI Tie-Zhu. Review of the brown tides caused by Aureococcus anophagefferens[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(3): 473-480. DOI: 10.13634/j.cnki.mes20160324 |
[8] | WANG Wei-min, LIU Guang-xing, CHEN Hong-ju, MAO Xue-wei, YI Xiao-yan. Short-term effects of ocean acidification on phytoplankton community structure in nearshore area of Yellow Sea[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(3): 392-397. DOI: 10.13634/j.cnki.mes20160311 |
[9] | SUN Cheng-zhi, ZHENG Chong-wei, CHEN Xuan. Seasonal characteristics and long-term trend analysisof SST in the global ocean[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(5): 713-717. DOI: 10.13634/j.cnki.mes.2015.05.012 |
[10] | QIAN Guo-dong, LI Ming, QU Liang, REN Xu-he, CHI Jie. Effects of short-term weathering on the N-alkanes fraction of crude oils in Bohai Sea[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2015, 34(1): 23-28. DOI: 10.13634/j.cnki.mes.2015.01.005 |
1. |
胡文昊,尚凯,葛懿夫,翟国方,张钰佳. 气候变化背景下沿海城市轨道交通网络韧性评估——以深圳市为例. 灾害学. 2025(01): 167-173+186 .
![]() | |
2. |
杨乐晴,王丽娜,张红春,董昌明. 基于STL的南海海表温度组合预测模型. 海洋环境科学. 2024(01): 109-118 .
![]() | |
3. |
韩莹,曹允重,张凌珺,赵芮晗,董昌明. 融合IVMD的海表温度时空智能预测方法. 海洋测绘. 2024(03): 53-57+61 .
![]() | |
4. |
李竞时,匡晓迪,李琼,何恩业,张聿柏,袁承仪,张延琳. 基于主成分分析和LSTM神经网络的海温预报模型. 海洋预报. 2023(02): 1-10 .
![]() | |
5. |
韩莹,孙凯强,闫加宁,董昌明. 基于变分模态分解-长短时记忆网络-宽度学习系统混合模型的东海海温预测. 激光与光电子学进展. 2023(07): 59-67 .
![]() | |
6. |
郭利进,许瑞伟. 基于改进果蝇算法的LSTM在水质预测中的应用. 长江科学院院报. 2023(08): 57-63 .
![]() | |
7. |
陆秋琴,王璐,黄光球. 考虑时序特征的污染物数据异常检测及恢复. 安全与环境学报. 2023(12): 4590-4599 .
![]() | |
8. |
朱怡蒙,贺可太,姜肖依,冯玉超. 基于周期基准孤立森林的服装供应异常监测算法. 计算机应用. 2023(S2): 268-275 .
![]() | |
9. |
裴正强,张延亮,石攀峰,梁辰,赵利辉. 基于加权平滑季节趋势时序分解法的船舶机损事故风险防控. 中国航海. 2022(02): 43-47 .
![]() | |
10. |
韩莹,孙凯强,张栋,王乐豪,谈昊然. 一种基于深度学习的海表温度混合预测方法. 海洋环境科学. 2022(05): 791-798 .
![]() | |
11. |
王丽娜,葛鹏,刘会滔,宋悦,董昌明. 基于注意力机制的HDC-BiGRU海表温度预测模型. 海洋环境科学. 2022(06): 947-956 .
![]() | |
12. |
朱新丽,李彦彬,李红星,杜雪芳. 黑河上中游月径流序列多重分形特性研究. 华北水利水电大学学报(自然科学版). 2022(05): 53-62 .
![]() | |
13. |
罗烨泓,罗威,余冬文,沙国兴,陈柽涛. 基于序列分解的近50年韶关地区气温变化特征. 广东气象. 2021(06): 16-19 .
![]() |