Citation: | WANG Ping, SUN Jia-wen, DONG Xiang-ke, FANG Hai-chao, ZHANG Zi-peng, YING Jin. Numerical simulation of water exchange changes in Pulandian bay after ecological restoration[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2021, 40(6): 937-946. DOI: 10.12111/j.mes.2021-x-0105 |
The hydrodynamic characteristics of Pulandian bay was studied based on the unstructured numerical model, the influence of different removal elevation of pool stem on water exchange was studied coupling the transport and diffusion model. The result showed: the direction of fluctuations in Pulandian bay was basically the same as that of the shoreline, after the pool stem was removed, the water area would increase by 15% and bay tidal volume would increase by 10%. When the elevation of pool stem was low in plan 1, the flood and dry-out flow was more uniform on intertidal zone; when the pool stem remained too high in plan 2, the flow velocity between the pool stems were large, and the tidal current field was chaotic. Before the project, the water half-exchange time of water in the bay gradually increased from 0 d to 70 d, and above 70 d at the bottom. After the project, the maximum half-exchange time in the bay of plan 1 was reduced to 50 d, and reduced to 60 d in plan 2. The average half-exchange time in the bay was 36.8 days, which dropped to 24.0 days after the implementation of plan 1, and 28.5 days for plan 2, the water quality improvement of plan 1 is 12% higher than plan 2.
[1] |
符文侠. 普兰店湾水文气象特征与泥沙运动的分析[J]. 黄渤海海洋, 1987, 5(1): 71-77.
|
[2] |
中国海洋发展研究中心. 2017年中国海洋生态环境状况公报[R]. 青岛: 中国海洋发展研究中心, 2018.
|
[3] |
中华人民共和国生态环境部. 2018年中国海洋生态环境状况公报[R]. 北京: 中华人民共和国生态环境部, 2019.
|
[4] |
生态环境部, 发展改革委, 自然资源部. 关于印发《渤海综合治理攻坚战行动计划》的通知[EB/OL]. (2018-11-30). https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=15919.
|
[5] |
陈克亮, 吴侃侃, 黄海萍, 等. 我国海洋生态修复政策现状、问题及建议[J]. 应用海洋学学报, 2021, 40(1): 170-178.
|
[6] |
张 伟. 近岸海域水交换特性及其影响研究[D]. 天津: 天津大学, 2013.
|
[7] |
SIGNELL R P, BUTMAN B. Modeling tidal exchange and dispersion in Boston Harbor[J]. Journal of Geophysical Research:Oceans, 1992, 97(C10): 15591-15606. doi: 10.1029/92JC01429
|
[8] |
何 磊. 海湾水交换数值模拟方法研究[D]. 天津: 天津大学, 2004.
|
[9] |
李小宝, 袁德奎, 陶建华. 大型海湾水交换计算中随机游动方法的应用研究[J]. 应用数学和力学, 2011, 32(5): 587-598. doi: 10.3879/j.issn.1000-0887.2011.05.009
|
[10] |
吕迎雪. 海湾水交换数值模拟方法的研究及其应用[D]. 天津: 天津大学, 2009.
|
[11] |
匡翠萍, 俞露露, 顾 杰, 等. 人工岛对金梦海湾水体交换的影响[J]. 中国环境科学, 2019, 39(2): 757-767. doi: 10.3969/j.issn.1000-6923.2019.02.039
|
[12] |
LUFF R, POHLMANN T. Calculation of water exchange times in the ICES-boxes with a eulerian dispersion model using a half-life time approach[J]. Deutsche Hydrografische Zeitschrift, 1995, 47(4): 287-299. doi: 10.1007/BF02737789
|
[13] |
LIU Z, WEI H, LIU G S, et al. Simulation of water exchange in Jiaozhou Bay by average residence time approach[J]. Estuarine, Coastal and Shelf Science, 2004, 61(1): 25-35. doi: 10.1016/j.ecss.2004.04.009
|
[14] |
王 平, 陈伟斌, 邹文峰, 等. 象山港潮余流结构及水体半交换时间数值研究[J]. 海洋环境科学, 2018, 37(1): 107-115.
|
[15] |
陈 昊. 普兰店湾海洋环境容量分析与研究[D]. 大连: 大连海洋大学, 2015.
|
[16] |
唐俊逸. 普兰店湾水体中COD、氮、磷容量控制及减排分配的研究[D]. 大连: 大连海事大学, 2016.
|
[17] |
郝燕妮. 普兰店湾海水交换与自净能力及污染应急对策研究[D]. 大连: 大连海事大学, 2017.
|
[18] |
姜恒志, 崔 雷, 于大涛, 等. 普兰店湾水体交换数值模拟研究[J]. 海洋环境科学, 2017, 36(1): 43-47,55.
|
[19] |
崔 雷, 姜恒志, 袁仲杰, 等. 普兰店湾内湾水交换数值模拟研究[J]. 海洋湖沼通报, 2017 (6): 52-60.
|
[1] | HU Chao, LIN Jianguo, YU Wen, HAO Yanni, WANG Wei. Numerical simulation of spreading characteristics of oil spilled behaviour from submarine pipeline under complex sea conditions[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2025, 44(3): 412-420. DOI: 10.12111/j.mes.2024-x-0081 |
[2] | DING Xiaokun, MA Deyun, WANG Aobo. Numerical simulation on the migration and transformation of polybrominated diphenyl ethers 153 in Jiaozhou bay[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(4): 572-580, 590. DOI: 10.12111/j.mes.2024-x-0013 |
[3] | LIU Xincang, WANG Ping, DENG Jiahui, WANG Yongkang, ZHANG Yongqiang. Numerical simulation of water pollution in Liaodong Bay under monsoon[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2024, 43(3): 465-474. DOI: 10.12111/j.mes.2023-x-0186 |
[4] | CHEN Daixin, AI Congfang, YAN Qingxun, CHEN Lei. Numerical simulation of scour around an offshore platform foundation based on a two-phase flow model[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2023, 42(6): 965-972. DOI: 10.12111/j.mes.2023-x-0021 |
[5] | CAO Xue-feng, ZHANG Yu-ming, ZHANG Shu-fang, SHI Wen-qi, LI Qing-jie, SHI Hong-yuan, WANG Ping, WANG Yu, ZHAO Qian, HAN Cheng-wei. Numerical simulation of water exchange in the Dalian bay of China[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2020, 39(1): 114-120. DOI: 10.12111/j.mes20200116 |
[6] | ZHANG Xue-qing, SUN Ya-jie, WANG Xing, LIU Pei-ting, XIONG Ying. Modeling the water exchange in Haizhou bay and adjacent sea[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2017, 36(3): 427-433. DOI: 10.13634/j.cnki.mes20170317 |
[7] | JIANG Heng-zhi, CUI Lei, YU Da-tao, ZHANG Hao, WANG Tao, ZHANG Chong. Numerical study of water exchange in the Pulandian bay[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2017, 36(1): 43-47, 55. DOI: 10.13634/j.cnki.mes20170107 |
[8] | YANG Ji-kai, AI Cong-fang, JIN Sheng, DING Wei-ye. Research on seaward sewage discharge diffuser by numerical simulation and model test[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(6): 938-942. DOI: 10.13634/j.cnki.mes20160622 |
[9] | YAN Yu, SHAO Dong-dong, GU Wei, YUAN Shuai, LI Ying, CHAO Jin-long, LI Qian. In-situ observation and three-dimensional numerical simulation of cooling water discharge from Bayuquan thermal power plant[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(4): 571-579. DOI: 10.13634/j.cnki.mes20160415 |
[10] | WU Li-zhen, LV Hai-bin, TIAN Hui-juan. Numerical simulation of suspended particle tracking in the south of Haizhou Bay[J]. Chinese Journal of MARINE ENVIRONMENTAL SCIENCE, 2016, 35(2): 247-251. DOI: 10.13634/j.cnki.mes.2016.02.016 |